SRB2/src/hardware/hw_md3load.c
2019-09-03 18:27:22 -03:00

523 lines
14 KiB
C

/*
From the 'Wizard2' engine by Spaddlewit Inc. ( http://www.spaddlewit.com )
An experimental work-in-progress.
Donated to Sonic Team Junior and adapted to work with
Sonic Robo Blast 2. The license of this code matches whatever
the licensing is for Sonic Robo Blast 2.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "../doomdef.h"
#include "hw_md3load.h"
#include "hw_model.h"
#include "../z_zone.h"
typedef struct
{
int ident; // A "magic number" that's used to identify the .md3 file
int version; // The version of the file, always 15
char name[64];
int flags;
int numFrames; // Number of frames
int numTags;
int numSurfaces;
int numSkins; // Number of skins with the model
int offsetFrames;
int offsetTags;
int offsetSurfaces;
int offsetEnd; // Offset, in bytes from the start of the file, to the end of the file (filesize)
} md3modelHeader;
typedef struct
{
float minBounds[3]; // First corner of the bounding box
float maxBounds[3]; // Second corner of the bounding box
float localOrigin[3]; // Local origin, usually (0, 0, 0)
float radius; // Radius of bounding sphere
char name[16]; // Name of frame
} md3Frame;
typedef struct
{
char name[64]; // Name of tag
float origin[3]; // Coordinates of tag
float axis[9]; // Orientation of tag object
} md3Tag;
typedef struct
{
int ident;
char name[64]; // Name of this surface
int flags;
int numFrames; // # of keyframes
int numShaders; // # of shaders
int numVerts; // # of vertices
int numTriangles; // # of triangles
int offsetTriangles; // Relative offset from start of this struct to where the list of Triangles start
int offsetShaders; // Relative offset from start of this struct to where the list of Shaders start
int offsetST; // Relative offset from start of this struct to where the list of tex coords start
int offsetXYZNormal; // Relative offset from start of this struct to where the list of vertices start
int offsetEnd; // Relative offset from start of this struct to where this surface ends
} md3Surface;
typedef struct
{
char name[64]; // Name of this shader
int shaderIndex; // Shader index number
} md3Shader;
typedef struct
{
int index[3]; // List of offset values into the list of Vertex objects that constitute the corners of the Triangle object.
} md3Triangle;
typedef struct
{
float st[2];
} md3TexCoord;
typedef struct
{
short x, y, z, n;
} md3Vertex;
static float latlnglookup[256][256][3];
static void GetNormalFromLatLong(short latlng, float *out)
{
float *lookup = latlnglookup[(unsigned char)(latlng >> 8)][(unsigned char)(latlng & 255)];
out[0] = *lookup++;
out[1] = *lookup++;
out[2] = *lookup++;
}
#if 0
static void NormalToLatLng(float *n, short *out)
{
// Special cases
if (0.0f == n[0] && 0.0f == n[1])
{
if (n[2] > 0.0f)
*out = 0;
else
*out = 128;
}
else
{
char x, y;
x = (char)(57.2957795f * (atan2(n[1], n[0])) * (255.0f / 360.0f));
y = (char)(57.2957795f * (acos(n[2])) * (255.0f / 360.0f));
*out = (x << 8) + y;
}
}
#endif
static inline void LatLngToNormal(short n, float *out)
{
const float PI = (3.1415926535897932384626433832795f);
float lat = (float)(n >> 8);
float lng = (float)(n & 255);
lat *= PI / 128.0f;
lng *= PI / 128.0f;
out[0] = cosf(lat) * sinf(lng);
out[1] = sinf(lat) * sinf(lng);
out[2] = cosf(lng);
}
static void LatLngInit(void)
{
int i, j;
for (i = 0; i < 256; i++)
{
for (j = 0; j < 256; j++)
LatLngToNormal((short)((i << 8) + j), latlnglookup[i][j]);
}
}
static boolean latlnginit = false;
model_t *MD3_LoadModel(const char *fileName, int ztag, boolean useFloat)
{
const float WUNITS = 1.0f;
model_t *retModel = NULL;
md3Frame *frames = NULL;
char *fname = NULL;
md3modelHeader *mdh;
long fileLen;
long fileReadLen;
char *buffer;
int surfEnd;
int i, t;
int matCount;
FILE *f;
if (!latlnginit)
{
LatLngInit();
latlnginit = true;
}
f = fopen(fileName, "rb");
if (!f)
return NULL;
retModel = (model_t*)Z_Calloc(sizeof(model_t), ztag, 0);
// find length of file
fseek(f, 0, SEEK_END);
fileLen = ftell(f);
fseek(f, 0, SEEK_SET);
// read in file
buffer = malloc(fileLen);
fileReadLen = fread(buffer, fileLen, 1, f);
fclose(f);
(void)fileReadLen; // intentionally ignore return value, per buildbot
// get pointer to file header
mdh = (md3modelHeader*)buffer;
retModel->numMeshes = mdh->numSurfaces;
retModel->numMaterials = 0;
surfEnd = 0;
for (i = 0; i < mdh->numSurfaces; i++)
{
md3Surface *mdS = (md3Surface*)&buffer[mdh->offsetSurfaces];
surfEnd += mdS->offsetEnd;
retModel->numMaterials += mdS->numShaders;
}
// Initialize materials
if (retModel->numMaterials <= 0) // Always at least one skin, duh
retModel->numMaterials = 1;
retModel->materials = (material_t*)Z_Calloc(sizeof(material_t)*retModel->numMaterials, ztag, 0);
for (t = 0; t < retModel->numMaterials; t++)
{
retModel->materials[t].ambient[0] = 0.3686f;
retModel->materials[t].ambient[1] = 0.3684f;
retModel->materials[t].ambient[2] = 0.3684f;
retModel->materials[t].ambient[3] = 1.0f;
retModel->materials[t].diffuse[0] = 0.8863f;
retModel->materials[t].diffuse[1] = 0.8850f;
retModel->materials[t].diffuse[2] = 0.8850f;
retModel->materials[t].diffuse[3] = 1.0f;
retModel->materials[t].emissive[0] = 0.0f;
retModel->materials[t].emissive[1] = 0.0f;
retModel->materials[t].emissive[2] = 0.0f;
retModel->materials[t].emissive[3] = 1.0f;
retModel->materials[t].specular[0] = 0.4902f;
retModel->materials[t].specular[1] = 0.4887f;
retModel->materials[t].specular[2] = 0.4887f;
retModel->materials[t].specular[3] = 1.0f;
retModel->materials[t].shininess = 25.0f;
retModel->materials[t].spheremap = false;
}
retModel->meshes = (mesh_t*)Z_Calloc(sizeof(mesh_t)*retModel->numMeshes, ztag, 0);
frames = (md3Frame*)&buffer[mdh->offsetFrames];
retModel->framenames = (char*)Z_Calloc(mdh->numFrames*16, ztag, 0);
fname = retModel->framenames;
for (i = 0; i < mdh->numFrames; i++)
{
memcpy(fname, frames->name, 16);
fname += 16;
frames++;
}
matCount = 0;
for (i = 0, surfEnd = 0; i < mdh->numSurfaces; i++)
{
int j;
md3Shader *mdShader;
md3Surface *mdS = (md3Surface*)&buffer[mdh->offsetSurfaces + surfEnd];
surfEnd += mdS->offsetEnd;
mdShader = (md3Shader*)((char*)mdS + mdS->offsetShaders);
for (j = 0; j < mdS->numShaders; j++, matCount++)
{
size_t len = strlen(mdShader[j].name);
mdShader[j].name[len-1] = 'z';
mdShader[j].name[len-2] = 'u';
mdShader[j].name[len-3] = 'b';
// Load material
/* retModel->materials[matCount].texture = Texture::ReadTexture(mdShader[j].name, ZT_TEXTURE);
if (!systemSucks)
{
// Check for a normal map...??
char openfilename[1024];
char normalMapName[1024];
strcpy(normalMapName, mdShader[j].name);
len = strlen(normalMapName);
char *ptr = &normalMapName[len];
ptr--; // z
ptr--; // u
ptr--; // b
ptr--; // .
*ptr++ = '_';
*ptr++ = 'n';
*ptr++ = '.';
*ptr++ = 'b';
*ptr++ = 'u';
*ptr++ = 'z';
*ptr++ = '\0';
sprintf(openfilename, "%s/%s", "textures", normalMapName);
// Convert backslashes to forward slashes
for (int k = 0; k < 1024; k++)
{
if (openfilename[k] == '\0')
break;
if (openfilename[k] == '\\')
openfilename[k] = '/';
}
Resource::resource_t *res = Resource::Open(openfilename);
if (res)
{
Resource::Close(res);
retModel->materials[matCount].lightmap = Texture::ReadTexture(normalMapName, ZT_TEXTURE);
}
}*/
}
retModel->meshes[i].numFrames = mdS->numFrames;
retModel->meshes[i].numTriangles = mdS->numTriangles;
if (!useFloat) // 'tinyframe' mode with indices
{
float tempNormal[3];
float *uvptr;
md3TexCoord *mdST;
unsigned short *indexptr;
md3Triangle *mdT;
retModel->meshes[i].tinyframes = (tinyframe_t*)Z_Calloc(sizeof(tinyframe_t)*mdS->numFrames, ztag, 0);
retModel->meshes[i].numVertices = mdS->numVerts;
retModel->meshes[i].uvs = (float*)Z_Malloc(sizeof(float)*2*mdS->numVerts, ztag, 0);
for (j = 0; j < mdS->numFrames; j++)
{
short *vertptr;
char *normptr;
// char *tanptr;
int k;
md3Vertex *mdV = (md3Vertex*)((char*)mdS + mdS->offsetXYZNormal + (mdS->numVerts*j*sizeof(md3Vertex)));
retModel->meshes[i].tinyframes[j].vertices = (short*)Z_Malloc(sizeof(short)*3*mdS->numVerts, ztag, 0);
retModel->meshes[i].tinyframes[j].normals = (char*)Z_Malloc(sizeof(char)*3*mdS->numVerts, ztag, 0);
// if (retModel->materials[0].lightmap)
// retModel->meshes[i].tinyframes[j].tangents = (char*)malloc(sizeof(char));//(char*)Z_Malloc(sizeof(char)*3*mdS->numVerts, ztag);
retModel->meshes[i].indices = (unsigned short*)Z_Malloc(sizeof(unsigned short) * 3 * mdS->numTriangles, ztag, 0);
vertptr = retModel->meshes[i].tinyframes[j].vertices;
normptr = retModel->meshes[i].tinyframes[j].normals;
// tanptr = retModel->meshes[i].tinyframes[j].tangents;
retModel->meshes[i].tinyframes[j].material = &retModel->materials[i];
for (k = 0; k < mdS->numVerts; k++)
{
// Vertex
*vertptr = mdV[k].x;
vertptr++;
*vertptr = mdV[k].z;
vertptr++;
*vertptr = 1.0f - mdV[k].y;
vertptr++;
// Normal
GetNormalFromLatLong(mdV[k].n, tempNormal);
*normptr = (char)(tempNormal[0] * 127);
normptr++;
*normptr = (char)(tempNormal[2] * 127);
normptr++;
*normptr = (char)(tempNormal[1] * 127);
normptr++;
}
}
uvptr = (float*)retModel->meshes[i].uvs;
mdST = (md3TexCoord*)((char*)mdS + mdS->offsetST);
for (j = 0; j < mdS->numVerts; j++)
{
*uvptr = mdST[j].st[0];
uvptr++;
*uvptr = mdST[j].st[1];
uvptr++;
}
indexptr = retModel->meshes[i].indices;
mdT = (md3Triangle*)((char*)mdS + mdS->offsetTriangles);
for (j = 0; j < mdS->numTriangles; j++, mdT++)
{
// Indices
*indexptr = (unsigned short)mdT->index[0];
indexptr++;
*indexptr = (unsigned short)mdT->index[1];
indexptr++;
*indexptr = (unsigned short)mdT->index[2];
indexptr++;
}
}
else // Traditional full-float loading method
{
float dataScale = 0.015624f * WUNITS;
float tempNormal[3];
md3TexCoord *mdST;
md3Triangle *mdT;
float *uvptr;
int k;
retModel->meshes[i].numVertices = mdS->numTriangles * 3;//mdS->numVerts;
retModel->meshes[i].frames = (mdlframe_t*)Z_Calloc(sizeof(mdlframe_t)*mdS->numFrames, ztag, 0);
retModel->meshes[i].uvs = (float*)Z_Malloc(sizeof(float)*2*mdS->numTriangles*3, ztag, 0);
for (j = 0; j < mdS->numFrames; j++)
{
float *vertptr;
float *normptr;
md3Vertex *mdV = (md3Vertex*)((char*)mdS + mdS->offsetXYZNormal + (mdS->numVerts*j*sizeof(md3Vertex)));
retModel->meshes[i].frames[j].vertices = (float*)Z_Malloc(sizeof(float)*3*mdS->numTriangles*3, ztag, 0);
retModel->meshes[i].frames[j].normals = (float*)Z_Malloc(sizeof(float)*3*mdS->numTriangles*3, ztag, 0);
// if (retModel->materials[i].lightmap)
// retModel->meshes[i].frames[j].tangents = (float*)malloc(sizeof(float));//(float*)Z_Malloc(sizeof(float)*3*mdS->numTriangles*3, ztag);
vertptr = retModel->meshes[i].frames[j].vertices;
normptr = retModel->meshes[i].frames[j].normals;
retModel->meshes[i].frames[j].material = &retModel->materials[i];
mdT = (md3Triangle*)((char*)mdS + mdS->offsetTriangles);
for (k = 0; k < mdS->numTriangles; k++)
{
// Vertex 1
*vertptr = mdV[mdT->index[0]].x * dataScale;
vertptr++;
*vertptr = mdV[mdT->index[0]].z * dataScale;
vertptr++;
*vertptr = 1.0f - mdV[mdT->index[0]].y * dataScale;
vertptr++;
GetNormalFromLatLong(mdV[mdT->index[0]].n, tempNormal);
*normptr = tempNormal[0];
normptr++;
*normptr = tempNormal[2];
normptr++;
*normptr = tempNormal[1];
normptr++;
// Vertex 2
*vertptr = mdV[mdT->index[1]].x * dataScale;
vertptr++;
*vertptr = mdV[mdT->index[1]].z * dataScale;
vertptr++;
*vertptr = 1.0f - mdV[mdT->index[1]].y * dataScale;
vertptr++;
GetNormalFromLatLong(mdV[mdT->index[1]].n, tempNormal);
*normptr = tempNormal[0];
normptr++;
*normptr = tempNormal[2];
normptr++;
*normptr = tempNormal[1];
normptr++;
// Vertex 3
*vertptr = mdV[mdT->index[2]].x * dataScale;
vertptr++;
*vertptr = mdV[mdT->index[2]].z * dataScale;
vertptr++;
*vertptr = 1.0f - mdV[mdT->index[2]].y * dataScale;
vertptr++;
GetNormalFromLatLong(mdV[mdT->index[2]].n, tempNormal);
*normptr = tempNormal[0];
normptr++;
*normptr = tempNormal[2];
normptr++;
*normptr = tempNormal[1];
normptr++;
mdT++; // Advance to next triangle
}
}
mdST = (md3TexCoord*)((char*)mdS + mdS->offsetST);
uvptr = (float*)retModel->meshes[i].uvs;
mdT = (md3Triangle*)((char*)mdS + mdS->offsetTriangles);
for (k = 0; k < mdS->numTriangles; k++)
{
*uvptr = mdST[mdT->index[0]].st[0];
uvptr++;
*uvptr = mdST[mdT->index[0]].st[1];
uvptr++;
*uvptr = mdST[mdT->index[1]].st[0];
uvptr++;
*uvptr = mdST[mdT->index[1]].st[1];
uvptr++;
*uvptr = mdST[mdT->index[2]].st[0];
uvptr++;
*uvptr = mdST[mdT->index[2]].st[1];
uvptr++;
mdT++; // Advance to next triangle
}
}
}
/*
// Tags?
retModel->numTags = mdh->numTags;
retModel->maxNumFrames = mdh->numFrames;
retModel->tags = (tag_t*)Z_Calloc(sizeof(tag_t) * retModel->numTags * mdh->numFrames, ztag);
md3Tag *mdTag = (md3Tag*)&buffer[mdh->offsetTags];
tag_t *curTag = retModel->tags;
for (i = 0; i < mdh->numFrames; i++)
{
int j;
for (j = 0; j < retModel->numTags; j++, mdTag++)
{
strcpys(curTag->name, mdTag->name, sizeof(curTag->name) / sizeof(char));
curTag->transform.m[0][0] = mdTag->axis[0];
curTag->transform.m[0][1] = mdTag->axis[1];
curTag->transform.m[0][2] = mdTag->axis[2];
curTag->transform.m[1][0] = mdTag->axis[3];
curTag->transform.m[1][1] = mdTag->axis[4];
curTag->transform.m[1][2] = mdTag->axis[5];
curTag->transform.m[2][0] = mdTag->axis[6];
curTag->transform.m[2][1] = mdTag->axis[7];
curTag->transform.m[2][2] = mdTag->axis[8];
curTag->transform.m[3][0] = mdTag->origin[0] * WUNITS;
curTag->transform.m[3][1] = mdTag->origin[1] * WUNITS;
curTag->transform.m[3][2] = mdTag->origin[2] * WUNITS;
curTag->transform.m[3][3] = 1.0f;
Matrix::Rotate(&curTag->transform, 90.0f, &Vector::Xaxis);
curTag++;
}
}*/
free(buffer);
return retModel;
}