SRB2/src/r_picformats.c

1700 lines
43 KiB
C

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 2005-2009 by Andrey "entryway" Budko.
// Copyright (C) 2018-2021 by Jaime "Lactozilla" Passos.
// Copyright (C) 2019-2021 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file r_picformats.c
/// \brief Picture generation.
#include "byteptr.h"
#include "dehacked.h"
#include "i_video.h"
#include "r_data.h"
#include "r_patch.h"
#include "r_picformats.h"
#include "r_textures.h"
#include "r_things.h"
#include "r_draw.h"
#include "v_video.h"
#include "z_zone.h"
#include "w_wad.h"
#ifdef HWRENDER
#include "hardware/hw_glob.h"
#endif
#ifdef HAVE_PNG
#ifndef _MSC_VER
#ifndef _LARGEFILE64_SOURCE
#define _LARGEFILE64_SOURCE
#endif
#endif
#ifndef _LFS64_LARGEFILE
#define _LFS64_LARGEFILE
#endif
#ifndef _FILE_OFFSET_BITS
#define _FILE_OFFSET_BITS 0
#endif
#include "png.h"
#ifndef PNG_READ_SUPPORTED
#undef HAVE_PNG
#endif
#endif
static unsigned char imgbuf[1<<26];
#ifdef PICTURE_PNG_USELOOKUP
static colorlookup_t png_colorlookup;
#endif
/** Converts a picture between two formats.
*
* \param informat Input picture format.
* \param picture Input picture data.
* \param outformat Output picture format.
* \param insize Input picture size.
* \param outsize Output picture size, as a pointer.
* \param inwidth Input picture width.
* \param inheight Input picture height.
* \param inleftoffset Input picture left offset, for patches.
* \param intopoffset Input picture top offset, for patches.
* \param flags Input picture flags.
* \return A pointer to the converted picture.
* \sa Picture_PatchConvert
* \sa Picture_FlatConvert
*/
void *Picture_Convert(
pictureformat_t informat, void *picture, pictureformat_t outformat,
size_t insize, size_t *outsize,
INT32 inwidth, INT32 inheight, INT32 inleftoffset, INT32 intopoffset,
pictureflags_t flags)
{
if (informat == PICFMT_NONE)
I_Error("Picture_Convert: input format was PICFMT_NONE!");
else if (outformat == PICFMT_NONE)
I_Error("Picture_Convert: output format was PICFMT_NONE!");
else if (informat == outformat)
I_Error("Picture_Convert: input and output formats were the same!");
if (Picture_IsPatchFormat(outformat))
return Picture_PatchConvert(informat, picture, outformat, insize, outsize, inwidth, inheight, inleftoffset, intopoffset, flags);
else if (Picture_IsFlatFormat(outformat))
return Picture_FlatConvert(informat, picture, outformat, insize, outsize, inwidth, inheight, inleftoffset, intopoffset, flags);
else
I_Error("Picture_Convert: unsupported input format!");
return NULL;
}
/** Converts a picture to a patch.
*
* \param informat Input picture format.
* \param picture Input picture data.
* \param outformat Output picture format.
* \param insize Input picture size.
* \param outsize Output picture size, as a pointer.
* \param inwidth Input picture width.
* \param inheight Input picture height.
* \param inleftoffset Input picture left offset, for patches.
* \param intopoffset Input picture top offset, for patches.
* \param flags Input picture flags.
* \return A pointer to the converted picture.
*/
void *Picture_PatchConvert(
pictureformat_t informat, void *picture, pictureformat_t outformat,
size_t insize, size_t *outsize,
INT16 inwidth, INT16 inheight, INT16 inleftoffset, INT16 intopoffset,
pictureflags_t flags)
{
INT16 x, y;
UINT8 *img;
UINT8 *imgptr = imgbuf;
UINT8 *colpointers, *startofspan;
size_t size = 0;
patch_t *inpatch = NULL;
INT32 inbpp = Picture_FormatBPP(informat);
(void)insize; // ignore
if (informat == PICFMT_NONE)
I_Error("Picture_PatchConvert: input format was PICFMT_NONE!");
else if (outformat == PICFMT_NONE)
I_Error("Picture_PatchConvert: output format was PICFMT_NONE!");
else if (informat == outformat)
I_Error("Picture_PatchConvert: input and output formats were the same!");
if (inbpp == PICDEPTH_NONE)
I_Error("Picture_PatchConvert: unknown input bits per pixel?!");
if (Picture_FormatBPP(outformat) == PICDEPTH_NONE)
I_Error("Picture_PatchConvert: unknown output bits per pixel?!");
// If it's a patch, you can just figure out
// the dimensions from the header.
if (Picture_IsPatchFormat(informat))
{
inpatch = (patch_t *)picture;
if (Picture_IsDoomPatchFormat(informat))
{
softwarepatch_t *doompatch = (softwarepatch_t *)picture;
inwidth = SHORT(doompatch->width);
inheight = SHORT(doompatch->height);
inleftoffset = SHORT(doompatch->leftoffset);
intopoffset = SHORT(doompatch->topoffset);
}
else
{
inwidth = inpatch->width;
inheight = inpatch->height;
inleftoffset = inpatch->leftoffset;
intopoffset = inpatch->topoffset;
}
}
// Write image size and offset
WRITEINT16(imgptr, inwidth);
WRITEINT16(imgptr, inheight);
WRITEINT16(imgptr, inleftoffset);
WRITEINT16(imgptr, intopoffset);
// Leave placeholder to column pointers
colpointers = imgptr;
imgptr += inwidth*4;
// Write columns
for (x = 0; x < inwidth; x++)
{
int lastStartY = 0;
int spanSize = 0;
startofspan = NULL;
// Write column pointer
WRITEINT32(colpointers, imgptr - imgbuf);
// Write pixels
for (y = 0; y < inheight; y++)
{
void *input = NULL;
boolean opaque = false;
// Read pixel
if (Picture_IsPatchFormat(informat))
input = Picture_GetPatchPixel(inpatch, informat, x, y, flags);
else if (Picture_IsFlatFormat(informat))
{
size_t offs = ((y * inwidth) + x);
switch (informat)
{
case PICFMT_FLAT32:
input = (UINT32 *)picture + offs;
break;
case PICFMT_FLAT16:
input = (UINT16 *)picture + offs;
break;
case PICFMT_FLAT:
input = (UINT8 *)picture + offs;
break;
default:
I_Error("Picture_PatchConvert: unsupported flat input format!");
break;
}
}
else
I_Error("Picture_PatchConvert: unsupported input format!");
// Determine opacity
if (input != NULL)
{
UINT8 alpha = 0xFF;
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t px = *(RGBA_t *)input;
alpha = px.s.alpha;
}
else if (inbpp == PICDEPTH_16BPP)
{
UINT16 px = *(UINT16 *)input;
alpha = (px & 0xFF00) >> 8;
}
else if (inbpp == PICDEPTH_8BPP)
{
UINT8 px = *(UINT8 *)input;
if (px == TRANSPARENTPIXEL)
alpha = 0;
}
opaque = (alpha > 1);
}
// End span if we have a transparent pixel
if (!opaque)
{
if (startofspan)
WRITEUINT8(imgptr, 0);
startofspan = NULL;
continue;
}
// Start new column if we need to
if (!startofspan || spanSize == 255)
{
int writeY = y;
// If we reached the span size limit, finish the previous span
if (startofspan)
WRITEUINT8(imgptr, 0);
if (y > 254)
{
// Make sure we're aligned to 254
if (lastStartY < 254)
{
WRITEUINT8(imgptr, 254);
WRITEUINT8(imgptr, 0);
imgptr += 2;
lastStartY = 254;
}
// Write stopgap empty spans if needed
writeY = y - lastStartY;
while (writeY > 254)
{
WRITEUINT8(imgptr, 254);
WRITEUINT8(imgptr, 0);
imgptr += 2;
writeY -= 254;
}
}
startofspan = imgptr;
WRITEUINT8(imgptr, writeY);
imgptr += 2;
spanSize = 0;
lastStartY = y;
}
// Write the pixel
switch (outformat)
{
case PICFMT_PATCH32:
case PICFMT_DOOMPATCH32:
{
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t out = *(RGBA_t *)input;
WRITEUINT32(imgptr, out.rgba);
}
else if (inbpp == PICDEPTH_16BPP)
{
RGBA_t out = pMasterPalette[*((UINT16 *)input) & 0xFF];
WRITEUINT32(imgptr, out.rgba);
}
else // PICFMT_PATCH
{
RGBA_t out = pMasterPalette[*((UINT8 *)input) & 0xFF];
WRITEUINT32(imgptr, out.rgba);
}
break;
}
case PICFMT_PATCH16:
case PICFMT_DOOMPATCH16:
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t in = *(RGBA_t *)input;
UINT8 out = NearestColor(in.s.red, in.s.green, in.s.blue);
WRITEUINT16(imgptr, (0xFF00 | out));
}
else if (inbpp == PICDEPTH_16BPP)
WRITEUINT16(imgptr, *(UINT16 *)input);
else // PICFMT_PATCH
WRITEUINT16(imgptr, (0xFF00 | (*(UINT8 *)input)));
break;
default: // PICFMT_PATCH
{
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t in = *(RGBA_t *)input;
UINT8 out = NearestColor(in.s.red, in.s.green, in.s.blue);
WRITEUINT8(imgptr, out);
}
else if (inbpp == PICDEPTH_16BPP)
{
UINT16 out = *(UINT16 *)input;
WRITEUINT8(imgptr, (out & 0xFF));
}
else // PICFMT_PATCH
WRITEUINT8(imgptr, *(UINT8 *)input);
break;
}
}
spanSize++;
startofspan[1] = spanSize;
}
if (startofspan)
WRITEUINT8(imgptr, 0);
WRITEUINT8(imgptr, 0xFF);
}
size = imgptr-imgbuf;
img = Z_Malloc(size, PU_STATIC, NULL);
memcpy(img, imgbuf, size);
if (Picture_IsInternalPatchFormat(outformat))
{
patch_t *converted = Patch_Create((softwarepatch_t *)img, size, NULL);
#ifdef HWRENDER
Patch_CreateGL(converted);
#endif
Z_Free(img);
if (outsize != NULL)
*outsize = sizeof(patch_t);
return converted;
}
else
{
if (outsize != NULL)
*outsize = size;
return img;
}
}
/** Converts a picture to a flat.
*
* \param informat Input picture format.
* \param picture Input picture data.
* \param outformat Output picture format.
* \param insize Input picture size.
* \param outsize Output picture size, as a pointer.
* \param inwidth Input picture width.
* \param inheight Input picture height.
* \param inleftoffset Input picture left offset, for patches.
* \param intopoffset Input picture top offset, for patches.
* \param flags Input picture flags.
* \return A pointer to the converted picture.
*/
void *Picture_FlatConvert(
pictureformat_t informat, void *picture, pictureformat_t outformat,
size_t insize, size_t *outsize,
INT16 inwidth, INT16 inheight, INT16 inleftoffset, INT16 intopoffset,
pictureflags_t flags)
{
void *outflat;
patch_t *inpatch = NULL;
INT32 inbpp = Picture_FormatBPP(informat);
INT32 outbpp = Picture_FormatBPP(outformat);
INT32 x, y;
size_t size;
(void)insize; // ignore
(void)inleftoffset; // ignore
(void)intopoffset; // ignore
if (informat == PICFMT_NONE)
I_Error("Picture_FlatConvert: input format was PICFMT_NONE!");
else if (outformat == PICFMT_NONE)
I_Error("Picture_FlatConvert: output format was PICFMT_NONE!");
else if (informat == outformat)
I_Error("Picture_FlatConvert: input and output formats were the same!");
if (inbpp == PICDEPTH_NONE)
I_Error("Picture_FlatConvert: unknown input bits per pixel?!");
if (outbpp == PICDEPTH_NONE)
I_Error("Picture_FlatConvert: unknown output bits per pixel?!");
// If it's a patch, you can just figure out
// the dimensions from the header.
if (Picture_IsPatchFormat(informat))
{
inpatch = (patch_t *)picture;
if (Picture_IsDoomPatchFormat(informat))
{
softwarepatch_t *doompatch = ((softwarepatch_t *)picture);
inwidth = SHORT(doompatch->width);
inheight = SHORT(doompatch->height);
}
else
{
inwidth = inpatch->width;
inheight = inpatch->height;
}
}
size = (inwidth * inheight) * (outbpp / 8);
outflat = Z_Calloc(size, PU_STATIC, NULL);
if (outsize)
*outsize = size;
// Set transparency
if (outbpp == PICDEPTH_8BPP)
memset(outflat, TRANSPARENTPIXEL, size);
for (y = 0; y < inheight; y++)
for (x = 0; x < inwidth; x++)
{
void *input;
size_t offs = ((y * inwidth) + x);
// Read pixel
if (Picture_IsPatchFormat(informat))
input = Picture_GetPatchPixel(inpatch, informat, x, y, flags);
else if (Picture_IsFlatFormat(informat))
input = (UINT8 *)picture + (offs * (inbpp / 8));
else
I_Error("Picture_FlatConvert: unsupported input format!");
if (!input)
continue;
switch (outformat)
{
case PICFMT_FLAT32:
{
UINT32 *f32 = (UINT32 *)outflat;
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t out = *(RGBA_t *)input;
f32[offs] = out.rgba;
}
else if (inbpp == PICDEPTH_16BPP)
{
RGBA_t out = pMasterPalette[*((UINT16 *)input) & 0xFF];
f32[offs] = out.rgba;
}
else // PICFMT_PATCH
{
RGBA_t out = pMasterPalette[*((UINT8 *)input) & 0xFF];
f32[offs] = out.rgba;
}
break;
}
case PICFMT_FLAT16:
{
UINT16 *f16 = (UINT16 *)outflat;
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t in = *(RGBA_t *)input;
UINT8 out = NearestColor(in.s.red, in.s.green, in.s.blue);
f16[offs] = (0xFF00 | out);
}
else if (inbpp == PICDEPTH_16BPP)
f16[offs] = *(UINT16 *)input;
else // PICFMT_PATCH
f16[offs] = (0xFF00 | *((UINT8 *)input));
break;
}
case PICFMT_FLAT:
{
UINT8 *f8 = (UINT8 *)outflat;
if (inbpp == PICDEPTH_32BPP)
{
RGBA_t in = *(RGBA_t *)input;
UINT8 out = NearestColor(in.s.red, in.s.green, in.s.blue);
f8[offs] = out;
}
else if (inbpp == PICDEPTH_16BPP)
{
UINT16 out = *(UINT16 *)input;
f8[offs] = (out & 0xFF);
}
else // PICFMT_PATCH
f8[offs] = *(UINT8 *)input;
break;
}
default:
I_Error("Picture_FlatConvert: unsupported output format!");
}
}
return outflat;
}
/** Returns a pixel from a patch.
*
* \param patch Input patch.
* \param informat Input picture format.
* \param x Pixel X position.
* \param y Pixel Y position.
* \param flags Input picture flags.
* \return A pointer to a pixel in the patch. Returns NULL if not opaque.
*/
void *Picture_GetPatchPixel(
patch_t *patch, pictureformat_t informat,
INT32 x, INT32 y,
pictureflags_t flags)
{
fixed_t ofs;
column_t *column;
UINT8 *s8 = NULL;
UINT16 *s16 = NULL;
UINT32 *s32 = NULL;
softwarepatch_t *doompatch = (softwarepatch_t *)patch;
boolean isdoompatch = Picture_IsDoomPatchFormat(informat);
INT16 width;
if (patch == NULL)
I_Error("Picture_GetPatchPixel: patch == NULL");
width = (isdoompatch ? SHORT(doompatch->width) : patch->width);
if (x >= 0 && x < width)
{
INT32 colx = (flags & PICFLAGS_XFLIP) ? (width-1)-x : x;
INT32 topdelta, prevdelta = -1;
INT32 colofs = (isdoompatch ? LONG(doompatch->columnofs[colx]) : patch->columnofs[colx]);
// Column offsets are pointers, so no casting is required.
if (isdoompatch)
column = (column_t *)((UINT8 *)doompatch + colofs);
else
column = (column_t *)((UINT8 *)patch->columns + colofs);
while (column->topdelta != 0xff)
{
topdelta = column->topdelta;
if (topdelta <= prevdelta)
topdelta += prevdelta;
prevdelta = topdelta;
s8 = (UINT8 *)(column) + 3;
if (Picture_FormatBPP(informat) == PICDEPTH_32BPP)
s32 = (UINT32 *)s8;
else if (Picture_FormatBPP(informat) == PICDEPTH_16BPP)
s16 = (UINT16 *)s8;
for (ofs = 0; ofs < column->length; ofs++)
{
if ((topdelta + ofs) == y)
{
if (Picture_FormatBPP(informat) == PICDEPTH_32BPP)
return &s32[ofs];
else if (Picture_FormatBPP(informat) == PICDEPTH_16BPP)
return &s16[ofs];
else // PICDEPTH_8BPP
return &s8[ofs];
}
}
if (Picture_FormatBPP(informat) == PICDEPTH_32BPP)
column = (column_t *)((UINT32 *)column + column->length);
else if (Picture_FormatBPP(informat) == PICDEPTH_16BPP)
column = (column_t *)((UINT16 *)column + column->length);
else
column = (column_t *)((UINT8 *)column + column->length);
column = (column_t *)((UINT8 *)column + 4);
}
}
return NULL;
}
/** Returns the amount of bits per pixel in the specified picture format.
*
* \param format Input picture format.
* \return The bits per pixel amount of the picture format.
*/
INT32 Picture_FormatBPP(pictureformat_t format)
{
INT32 bpp = PICDEPTH_NONE;
switch (format)
{
case PICFMT_PATCH32:
case PICFMT_FLAT32:
case PICFMT_DOOMPATCH32:
case PICFMT_PNG:
bpp = PICDEPTH_32BPP;
break;
case PICFMT_PATCH16:
case PICFMT_FLAT16:
case PICFMT_DOOMPATCH16:
bpp = PICDEPTH_16BPP;
break;
case PICFMT_PATCH:
case PICFMT_FLAT:
case PICFMT_DOOMPATCH:
bpp = PICDEPTH_8BPP;
break;
default:
break;
}
return bpp;
}
/** Checks if the specified picture format is a patch.
*
* \param format Input picture format.
* \return True if the picture format is a patch, false if not.
*/
boolean Picture_IsPatchFormat(pictureformat_t format)
{
return (Picture_IsInternalPatchFormat(format) || Picture_IsDoomPatchFormat(format));
}
/** Checks if the specified picture format is an internal patch.
*
* \param format Input picture format.
* \return True if the picture format is an internal patch, false if not.
*/
boolean Picture_IsInternalPatchFormat(pictureformat_t format)
{
switch (format)
{
case PICFMT_PATCH:
case PICFMT_PATCH16:
case PICFMT_PATCH32:
return true;
default:
return false;
}
}
/** Checks if the specified picture format is a Doom patch.
*
* \param format Input picture format.
* \return True if the picture format is a Doom patch, false if not.
*/
boolean Picture_IsDoomPatchFormat(pictureformat_t format)
{
switch (format)
{
case PICFMT_DOOMPATCH:
case PICFMT_DOOMPATCH16:
case PICFMT_DOOMPATCH32:
return true;
default:
return false;
}
}
/** Checks if the specified picture format is a flat.
*
* \param format Input picture format.
* \return True if the picture format is a flat, false if not.
*/
boolean Picture_IsFlatFormat(pictureformat_t format)
{
return (format == PICFMT_FLAT || format == PICFMT_FLAT16 || format == PICFMT_FLAT32);
}
/** Returns true if the lump is a valid Doom patch.
* PICFMT_DOOMPATCH only.
*
* \param patch Input patch.
* \param picture Input patch size.
* \return True if the input patch is valid.
*/
boolean Picture_CheckIfDoomPatch(softwarepatch_t *patch, size_t size)
{
INT16 width, height;
boolean result;
// minimum length of a valid Doom patch
if (size < 13)
return false;
width = SHORT(patch->width);
height = SHORT(patch->height);
result = (height > 0 && height <= 16384 && width > 0 && width <= 16384);
if (result)
{
// The dimensions seem like they might be valid for a patch, so
// check the column directory for extra security. All columns
// must begin after the column directory, and none of them must
// point past the end of the patch.
INT16 x;
for (x = 0; x < width; x++)
{
UINT32 ofs = LONG(patch->columnofs[x]);
// Need one byte for an empty column (but there's patches that don't know that!)
if (ofs < (UINT32)width * 4 + 8 || ofs >= (UINT32)size)
{
result = false;
break;
}
}
}
return result;
}
/** Converts a texture to a flat.
*
* \param trickytex The texture number.
* \return The converted flat.
*/
void *Picture_TextureToFlat(size_t trickytex)
{
texture_t *texture;
size_t tex;
UINT8 *converted;
size_t flatsize;
fixed_t col, ofs;
column_t *column;
UINT8 *desttop, *dest, *deststop;
UINT8 *source;
if (trickytex >= (unsigned)numtextures)
I_Error("Picture_TextureToFlat: invalid texture number!");
// Check the texture cache
// If the texture's not there, it'll be generated right now
tex = trickytex;
texture = textures[tex];
R_CheckTextureCache(tex);
// Allocate the flat
flatsize = (texture->width * texture->height);
converted = Z_Malloc(flatsize, PU_STATIC, NULL);
memset(converted, TRANSPARENTPIXEL, flatsize);
// Now we're gonna write to it
desttop = converted;
deststop = desttop + flatsize;
for (col = 0; col < texture->width; col++, desttop++)
{
// no post_t info
if (!texture->holes)
{
column = (column_t *)(R_GetColumn(tex, col));
source = (UINT8 *)(column);
dest = desttop;
for (ofs = 0; dest < deststop && ofs < texture->height; ofs++)
{
if (source[ofs] != TRANSPARENTPIXEL)
*dest = source[ofs];
dest += texture->width;
}
}
else
{
INT32 topdelta, prevdelta = -1;
column = (column_t *)((UINT8 *)R_GetColumn(tex, col) - 3);
while (column->topdelta != 0xff)
{
topdelta = column->topdelta;
if (topdelta <= prevdelta)
topdelta += prevdelta;
prevdelta = topdelta;
dest = desttop + (topdelta * texture->width);
source = (UINT8 *)column + 3;
for (ofs = 0; dest < deststop && ofs < column->length; ofs++)
{
if (source[ofs] != TRANSPARENTPIXEL)
*dest = source[ofs];
dest += texture->width;
}
column = (column_t *)((UINT8 *)column + column->length + 4);
}
}
}
return converted;
}
/** Returns true if the lump is a valid PNG.
*
* \param d The lump to be checked.
* \param s The lump size.
* \return True if the lump is a PNG image.
*/
boolean Picture_IsLumpPNG(const UINT8 *d, size_t s)
{
if (s < 67) // http://garethrees.org/2007/11/14/pngcrush/
return false;
// Check for PNG file signature using memcmp
// As it may be faster on CPUs with slow unaligned memory access
// Ref: http://www.libpng.org/pub/png/spec/1.2/PNG-Rationale.html#R.PNG-file-signature
return (memcmp(&d[0], "\x89\x50\x4e\x47\x0d\x0a\x1a\x0a", 8) == 0);
}
#ifndef NO_PNG_LUMPS
#ifdef HAVE_PNG
/*#if PNG_LIBPNG_VER_DLLNUM < 14
typedef PNG_CONST png_byte *png_const_bytep;
#endif*/
typedef struct
{
const UINT8 *buffer;
UINT32 size;
UINT32 position;
} png_io_t;
static void PNG_IOReader(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_io_t *f = png_get_io_ptr(png_ptr);
if (length > (f->size - f->position))
png_error(png_ptr, "PNG_IOReader: buffer overrun");
memcpy(data, f->buffer + f->position, length);
f->position += length;
}
typedef struct
{
char name[4];
void *data;
size_t size;
} png_chunk_t;
static png_byte *chunkname = NULL;
static png_chunk_t chunk;
static int PNG_ChunkReader(png_structp png_ptr, png_unknown_chunkp chonk)
{
(void)png_ptr;
if (!memcmp(chonk->name, chunkname, 4))
{
memcpy(chunk.name, chonk->name, 4);
chunk.size = chonk->size;
chunk.data = Z_Malloc(chunk.size, PU_STATIC, NULL);
memcpy(chunk.data, chonk->data, chunk.size);
return 1;
}
return 0;
}
static void PNG_error(png_structp PNG, png_const_charp pngtext)
{
CONS_Debug(DBG_RENDER, "libpng error at %p: %s", PNG, pngtext);
//I_Error("libpng error at %p: %s", PNG, pngtext);
}
static void PNG_warn(png_structp PNG, png_const_charp pngtext)
{
CONS_Debug(DBG_RENDER, "libpng warning at %p: %s", PNG, pngtext);
}
static png_byte grAb_chunk[5] = {'g', 'r', 'A', 'b', (png_byte)'\0'};
static png_bytep *PNG_Read(
const UINT8 *png,
INT32 *w, INT32 *h, INT16 *topoffset, INT16 *leftoffset,
boolean *use_palette, size_t size)
{
png_structp png_ptr;
png_infop png_info_ptr;
png_uint_32 width, height;
int bit_depth, color_type;
png_uint_32 y;
png_colorp palette;
int palette_size;
png_bytep trans;
int trans_num;
png_color_16p trans_values;
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf jmpbuf;
#endif
#endif
png_io_t png_io;
png_bytep *row_pointers;
png_voidp *user_chunk_ptr;
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, PNG_error, PNG_warn);
if (!png_ptr)
I_Error("PNG_Read: Couldn't initialize libpng!");
png_info_ptr = png_create_info_struct(png_ptr);
if (!png_info_ptr)
{
png_destroy_read_struct(&png_ptr, NULL, NULL);
I_Error("PNG_Read: libpng couldn't allocate memory!");
}
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
#else
if (setjmp(png_jmpbuf(png_ptr)))
#endif
{
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
I_Error("PNG_Read: libpng load error!");
}
#ifdef USE_FAR_KEYWORD
png_memcpy(png_jmpbuf(png_ptr), jmpbuf, sizeof jmp_buf);
#endif
png_io.buffer = png;
png_io.size = size;
png_io.position = 0;
png_set_read_fn(png_ptr, &png_io, PNG_IOReader);
memset(&chunk, 0x00, sizeof(png_chunk_t));
chunkname = grAb_chunk; // I want to read a grAb chunk
user_chunk_ptr = png_get_user_chunk_ptr(png_ptr);
png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr, PNG_ChunkReader);
png_set_keep_unknown_chunks(png_ptr, 2, chunkname, 1);
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
png_set_user_limits(png_ptr, 2048, 2048);
#endif
png_read_info(png_ptr, png_info_ptr);
png_get_IHDR(png_ptr, png_info_ptr, &width, &height, &bit_depth, &color_type, NULL, NULL, NULL);
if (bit_depth == 16)
png_set_strip_16(png_ptr);
palette = NULL;
*use_palette = false;
if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);
else if (color_type == PNG_COLOR_TYPE_PALETTE)
{
boolean usepal = false;
// Lactozilla: Check if the PNG has a palette, and if its color count
// matches the color count of SRB2's palette: 256 colors.
if (png_get_PLTE(png_ptr, png_info_ptr, &palette, &palette_size))
{
if (palette_size == 256 && pMasterPalette)
{
png_colorp pal = palette;
INT32 i;
usepal = true;
for (i = 0; i < 256; i++)
{
UINT32 rgb = R_PutRgbaRGBA(pal->red, pal->green, pal->blue, 0xFF);
if (rgb != pMasterPalette[i].rgba)
{
usepal = false;
break;
}
pal++;
}
}
}
// If any of the tRNS colors have an alpha lower than 0xFF, and that
// color is present on the image, the palette flag is disabled.
if (usepal)
{
png_get_tRNS(png_ptr, png_info_ptr, &trans, &trans_num, &trans_values);
if (trans && trans_num == 256)
{
INT32 i;
for (i = 0; i < trans_num; i++)
{
// libpng will transform this image into RGB even if
// the transparent index does not exist in the image,
// and there is no way around that.
if (trans[i] < 0xFF)
{
usepal = false;
break;
}
}
}
}
if (usepal)
*use_palette = true;
else
png_set_palette_to_rgb(png_ptr);
}
if (png_get_valid(png_ptr, png_info_ptr, PNG_INFO_tRNS))
png_set_tRNS_to_alpha(png_ptr);
else if (color_type != PNG_COLOR_TYPE_RGB_ALPHA && color_type != PNG_COLOR_TYPE_GRAY_ALPHA)
{
#if PNG_LIBPNG_VER < 10207
png_set_filler(png_ptr, 0xFF, PNG_FILLER_AFTER);
#else
png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER);
#endif
}
png_read_update_info(png_ptr, png_info_ptr);
// Read the image
row_pointers = (png_bytep*)malloc(sizeof(png_bytep) * height);
for (y = 0; y < height; y++)
row_pointers[y] = (png_byte*)malloc(png_get_rowbytes(png_ptr, png_info_ptr));
png_read_image(png_ptr, row_pointers);
// Read grAB chunk
if ((topoffset || leftoffset) && (chunk.data != NULL))
{
INT32 *offsets = (INT32 *)chunk.data;
// read left offset
if (leftoffset != NULL)
*leftoffset = (INT16)BIGENDIAN_LONG(*offsets);
offsets++;
// read top offset
if (topoffset != NULL)
*topoffset = (INT16)BIGENDIAN_LONG(*offsets);
}
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
if (chunk.data)
Z_Free(chunk.data);
*w = (INT32)width;
*h = (INT32)height;
return row_pointers;
}
/** Converts a PNG to a picture.
*
* \param png The PNG image.
* \param outformat The output picture's format.
* \param w The output picture's width, as a pointer.
* \param h The output picture's height, as a pointer.
* \param topoffset The output picture's top offset, for sprites, as a pointer.
* \param leftoffset The output picture's left offset, for sprites, as a pointer.
* \param insize The input picture's size.
* \param outsize A pointer to the output picture's size.
* \param flags Input picture flags.
* \return A pointer to the converted picture.
*/
void *Picture_PNGConvert(
const UINT8 *png, pictureformat_t outformat,
INT32 *w, INT32 *h,
INT16 *topoffset, INT16 *leftoffset,
size_t insize, size_t *outsize,
pictureflags_t flags)
{
void *flat;
INT32 outbpp;
size_t flatsize;
png_uint_32 x, y;
png_bytep row;
boolean palette = false;
png_bytep *row_pointers = NULL;
png_uint_32 width, height;
INT32 pngwidth, pngheight;
INT16 loffs = 0, toffs = 0;
if (png == NULL)
I_Error("Picture_PNGConvert: picture was NULL!");
if (w == NULL)
w = &pngwidth;
if (h == NULL)
h = &pngheight;
if (topoffset == NULL)
topoffset = &toffs;
if (leftoffset == NULL)
leftoffset = &loffs;
row_pointers = PNG_Read(png, w, h, topoffset, leftoffset, &palette, insize);
width = *w;
height = *h;
if (row_pointers == NULL)
I_Error("Picture_PNGConvert: row_pointers was NULL!");
// Find the output format's bits per pixel amount
outbpp = Picture_FormatBPP(outformat);
// Hack for patches because you'll want to preserve transparency.
if (Picture_IsPatchFormat(outformat))
{
// Force a higher bit depth
if (outbpp == PICDEPTH_8BPP)
outbpp = PICDEPTH_16BPP;
}
// Shouldn't happen.
if (outbpp == PICDEPTH_NONE)
I_Error("Picture_PNGConvert: unknown output bits per pixel?!");
// Figure out the size
flatsize = (width * height) * (outbpp / 8);
if (outsize)
*outsize = flatsize;
// Convert the image
flat = Z_Calloc(flatsize, PU_STATIC, NULL);
// Set transparency
if (outbpp == PICDEPTH_8BPP)
memset(flat, TRANSPARENTPIXEL, (width * height));
#ifdef PICTURE_PNG_USELOOKUP
if (outbpp != PICDEPTH_32BPP)
InitColorLUT(&png_colorlookup, pMasterPalette, false);
#endif
if (outbpp == PICDEPTH_32BPP)
{
RGBA_t out;
UINT32 *outflat = (UINT32 *)flat;
if (palette)
{
for (y = 0; y < height; y++)
{
row = row_pointers[y];
for (x = 0; x < width; x++)
{
out = V_GetColor(row[x]);
outflat[((y * width) + x)] = out.rgba;
}
}
}
else
{
for (y = 0; y < height; y++)
{
row = row_pointers[y];
for (x = 0; x < width; x++)
{
png_bytep px = &(row[x * 4]);
if ((UINT8)px[3])
{
out.s.red = (UINT8)px[0];
out.s.green = (UINT8)px[1];
out.s.blue = (UINT8)px[2];
out.s.alpha = (UINT8)px[3];
outflat[((y * width) + x)] = out.rgba;
}
else
outflat[((y * width) + x)] = 0x00000000;
}
}
}
}
else if (outbpp == PICDEPTH_16BPP)
{
UINT16 *outflat = (UINT16 *)flat;
if (palette)
{
for (y = 0; y < height; y++)
{
row = row_pointers[y];
for (x = 0; x < width; x++)
outflat[((y * width) + x)] = (0xFF << 8) | row[x];
}
}
else
{
for (y = 0; y < height; y++)
{
row = row_pointers[y];
for (x = 0; x < width; x++)
{
png_bytep px = &(row[x * 4]);
UINT8 red = (UINT8)px[0];
UINT8 green = (UINT8)px[1];
UINT8 blue = (UINT8)px[2];
UINT8 alpha = (UINT8)px[3];
if (alpha)
{
#ifdef PICTURE_PNG_USELOOKUP
UINT8 palidx = GetColorLUT(&png_colorlookup, red, green, blue);
#else
UINT8 palidx = NearestColor(red, green, blue);
#endif
outflat[((y * width) + x)] = (0xFF << 8) | palidx;
}
else
outflat[((y * width) + x)] = 0x0000;
}
}
}
}
else // 8bpp
{
UINT8 *outflat = (UINT8 *)flat;
if (palette)
{
for (y = 0; y < height; y++)
{
row = row_pointers[y];
for (x = 0; x < width; x++)
outflat[((y * width) + x)] = row[x];
}
}
else
{
for (y = 0; y < height; y++)
{
row = row_pointers[y];
for (x = 0; x < width; x++)
{
png_bytep px = &(row[x * 4]);
UINT8 red = (UINT8)px[0];
UINT8 green = (UINT8)px[1];
UINT8 blue = (UINT8)px[2];
UINT8 alpha = (UINT8)px[3];
if (alpha)
{
#ifdef PICTURE_PNG_USELOOKUP
UINT8 palidx = GetColorLUT(&png_colorlookup, red, green, blue);
#else
UINT8 palidx = NearestColor(red, green, blue);
#endif
outflat[((y * width) + x)] = palidx;
}
}
}
}
}
// Free the row pointers that we allocated for libpng.
for (y = 0; y < height; y++)
free(row_pointers[y]);
free(row_pointers);
// But wait, there's more!
if (Picture_IsPatchFormat(outformat))
{
void *converted;
pictureformat_t informat = PICFMT_NONE;
// Figure out the format of the flat, from the bit depth of the output format
switch (outbpp)
{
case 32:
informat = PICFMT_FLAT32;
break;
case 16:
informat = PICFMT_FLAT16;
break;
default:
informat = PICFMT_FLAT;
break;
}
// Now, convert it!
converted = Picture_PatchConvert(informat, flat, outformat, insize, outsize, (INT16)width, (INT16)height, *leftoffset, *topoffset, flags);
Z_Free(flat);
return converted;
}
// Return the converted flat!
return flat;
}
/** Returns the dimensions of a PNG image, but doesn't perform any conversions.
*
* \param png The PNG image.
* \param width A pointer to the input picture's width.
* \param height A pointer to the input picture's height.
* \param topoffset A pointer to the input picture's vertical offset.
* \param leftoffset A pointer to the input picture's horizontal offset.
* \param size The input picture's size.
* \return True if reading the file succeeded, false if it failed.
*/
boolean Picture_PNGDimensions(UINT8 *png, INT32 *width, INT32 *height, INT16 *topoffset, INT16 *leftoffset, size_t size)
{
png_structp png_ptr;
png_infop png_info_ptr;
png_uint_32 w, h;
int bit_depth, color_type;
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf jmpbuf;
#endif
#endif
png_io_t png_io;
png_voidp *user_chunk_ptr;
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, PNG_error, PNG_warn);
if (!png_ptr)
I_Error("Picture_PNGDimensions: Couldn't initialize libpng!");
png_info_ptr = png_create_info_struct(png_ptr);
if (!png_info_ptr)
{
png_destroy_read_struct(&png_ptr, NULL, NULL);
I_Error("Picture_PNGDimensions: libpng couldn't allocate memory!");
}
#ifdef USE_FAR_KEYWORD
if (setjmp(jmpbuf))
#else
if (setjmp(png_jmpbuf(png_ptr)))
#endif
{
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
I_Error("Picture_PNGDimensions: libpng load error!");
}
#ifdef USE_FAR_KEYWORD
png_memcpy(png_jmpbuf(png_ptr), jmpbuf, sizeof jmp_buf);
#endif
png_io.buffer = png;
png_io.size = size;
png_io.position = 0;
png_set_read_fn(png_ptr, &png_io, PNG_IOReader);
memset(&chunk, 0x00, sizeof(png_chunk_t));
chunkname = grAb_chunk; // I want to read a grAb chunk
user_chunk_ptr = png_get_user_chunk_ptr(png_ptr);
png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr, PNG_ChunkReader);
png_set_keep_unknown_chunks(png_ptr, 2, chunkname, 1);
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
png_set_user_limits(png_ptr, 2048, 2048);
#endif
png_read_info(png_ptr, png_info_ptr);
png_get_IHDR(png_ptr, png_info_ptr, &w, &h, &bit_depth, &color_type, NULL, NULL, NULL);
// Read grAB chunk
if ((topoffset || leftoffset) && (chunk.data != NULL))
{
INT32 *offsets = (INT32 *)chunk.data;
// read left offset
if (leftoffset != NULL)
*leftoffset = (INT16)BIGENDIAN_LONG(*offsets);
offsets++;
// read top offset
if (topoffset != NULL)
*topoffset = (INT16)BIGENDIAN_LONG(*offsets);
}
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
if (chunk.data)
Z_Free(chunk.data);
*width = (INT32)w;
*height = (INT32)h;
return true;
}
#endif
#endif
//
// R_ParseSpriteInfoFrame
//
// Parse a SPRTINFO frame.
//
static void R_ParseSpriteInfoFrame(spriteinfo_t *info)
{
char *sprinfoToken;
size_t sprinfoTokenLength;
char *frameChar = NULL;
UINT8 frameFrame = 0xFF;
INT16 frameXPivot = 0;
INT16 frameYPivot = 0;
rotaxis_t frameRotAxis = 0;
// Sprite identifier
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite frame should be");
}
sprinfoTokenLength = strlen(sprinfoToken);
if (sprinfoTokenLength != 1)
{
I_Error("Error parsing SPRTINFO lump: Invalid frame \"%s\"",sprinfoToken);
}
else
frameChar = sprinfoToken;
frameFrame = R_Char2Frame(frameChar[0]);
Z_Free(sprinfoToken);
// Left Curly Brace
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
I_Error("Error parsing SPRTINFO lump: Missing sprite info");
else
{
if (strcmp(sprinfoToken,"{")==0)
{
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite info should be");
}
while (strcmp(sprinfoToken,"}")!=0)
{
if (stricmp(sprinfoToken, "XPIVOT")==0)
{
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
frameXPivot = atoi(sprinfoToken);
}
else if (stricmp(sprinfoToken, "YPIVOT")==0)
{
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
frameYPivot = atoi(sprinfoToken);
}
else if (stricmp(sprinfoToken, "ROTAXIS")==0)
{
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
if ((stricmp(sprinfoToken, "X")==0) || (stricmp(sprinfoToken, "XAXIS")==0) || (stricmp(sprinfoToken, "ROLL")==0))
frameRotAxis = ROTAXIS_X;
else if ((stricmp(sprinfoToken, "Y")==0) || (stricmp(sprinfoToken, "YAXIS")==0) || (stricmp(sprinfoToken, "PITCH")==0))
frameRotAxis = ROTAXIS_Y;
else if ((stricmp(sprinfoToken, "Z")==0) || (stricmp(sprinfoToken, "ZAXIS")==0) || (stricmp(sprinfoToken, "YAW")==0))
frameRotAxis = ROTAXIS_Z;
}
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite info or right curly brace should be");
}
}
}
Z_Free(sprinfoToken);
}
// set fields
info->pivot[frameFrame].x = frameXPivot;
info->pivot[frameFrame].y = frameYPivot;
info->pivot[frameFrame].rotaxis = frameRotAxis;
}
//
// R_ParseSpriteInfo
//
// Parse a SPRTINFO lump.
//
static void R_ParseSpriteInfo(boolean spr2)
{
spriteinfo_t *info;
char *sprinfoToken;
size_t sprinfoTokenLength;
char newSpriteName[5]; // no longer dynamically allocated
spritenum_t sprnum = NUMSPRITES;
playersprite_t spr2num = NUMPLAYERSPRITES;
INT32 i;
INT32 skinnumbers[MAXSKINS];
INT32 foundskins = 0;
// Sprite name
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite name should be");
}
sprinfoTokenLength = strlen(sprinfoToken);
if (sprinfoTokenLength != 4)
{
I_Error("Error parsing SPRTINFO lump: Sprite name \"%s\" isn't 4 characters long",sprinfoToken);
}
else
{
memset(&newSpriteName, 0, 5);
M_Memcpy(newSpriteName, sprinfoToken, sprinfoTokenLength);
// ^^ we've confirmed that the token is == 4 characters so it will never overflow a 5 byte char buffer
strupr(newSpriteName); // Just do this now so we don't have to worry about it
}
Z_Free(sprinfoToken);
if (!spr2)
{
for (i = 0; i <= NUMSPRITES; i++)
{
if (i == NUMSPRITES)
I_Error("Error parsing SPRTINFO lump: Unknown sprite name \"%s\"", newSpriteName);
if (!memcmp(newSpriteName,sprnames[i],4))
{
sprnum = i;
break;
}
}
}
else
{
for (i = 0; i <= NUMPLAYERSPRITES; i++)
{
if (i == NUMPLAYERSPRITES)
I_Error("Error parsing SPRTINFO lump: Unknown sprite2 name \"%s\"", newSpriteName);
if (!memcmp(newSpriteName,spr2names[i],4))
{
spr2num = i;
break;
}
}
}
// allocate a spriteinfo
info = Z_Calloc(sizeof(spriteinfo_t), PU_STATIC, NULL);
info->available = true;
// Left Curly Brace
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where open curly brace for sprite \"%s\" should be",newSpriteName);
}
if (strcmp(sprinfoToken,"{")==0)
{
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where definition for sprite \"%s\" should be",newSpriteName);
}
while (strcmp(sprinfoToken,"}")!=0)
{
if (stricmp(sprinfoToken, "SKIN")==0)
{
INT32 skinnum;
char *skinName = NULL;
if (!spr2)
I_Error("Error parsing SPRTINFO lump: \"SKIN\" token found outside of a sprite2 definition");
Z_Free(sprinfoToken);
// Skin name
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where skin frame should be");
}
// copy skin name yada yada
sprinfoTokenLength = strlen(sprinfoToken);
skinName = (char *)Z_Malloc((sprinfoTokenLength+1)*sizeof(char),PU_STATIC,NULL);
M_Memcpy(skinName,sprinfoToken,sprinfoTokenLength*sizeof(char));
skinName[sprinfoTokenLength] = '\0';
strlwr(skinName);
Z_Free(sprinfoToken);
skinnum = R_SkinAvailable(skinName);
if (skinnum == -1)
I_Error("Error parsing SPRTINFO lump: Unknown skin \"%s\"", skinName);
skinnumbers[foundskins] = skinnum;
foundskins++;
}
else if (stricmp(sprinfoToken, "FRAME")==0)
{
R_ParseSpriteInfoFrame(info);
Z_Free(sprinfoToken);
if (spr2)
{
if (!foundskins)
I_Error("Error parsing SPRTINFO lump: No skins specified in this sprite2 definition");
for (i = 0; i < foundskins; i++)
{
size_t skinnum = skinnumbers[i];
skin_t *skin = &skins[skinnum];
spriteinfo_t *sprinfo = skin->sprinfo;
M_Memcpy(&sprinfo[spr2num], info, sizeof(spriteinfo_t));
}
}
else
M_Memcpy(&spriteinfo[sprnum], info, sizeof(spriteinfo_t));
}
else
{
I_Error("Error parsing SPRTINFO lump: Unknown keyword \"%s\" in sprite %s",sprinfoToken,newSpriteName);
}
sprinfoToken = M_GetToken(NULL);
if (sprinfoToken == NULL)
{
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite info or right curly brace for sprite \"%s\" should be",newSpriteName);
}
}
}
else
{
I_Error("Error parsing SPRTINFO lump: Expected \"{\" for sprite \"%s\", got \"%s\"",newSpriteName,sprinfoToken);
}
Z_Free(sprinfoToken);
Z_Free(info);
}
//
// R_ParseSPRTINFOLump
//
// Read a SPRTINFO lump.
//
void R_ParseSPRTINFOLump(UINT16 wadNum, UINT16 lumpNum)
{
char *sprinfoLump;
size_t sprinfoLumpLength;
char *sprinfoText;
char *sprinfoToken;
// Since lumps AREN'T \0-terminated like I'd assumed they should be, I'll
// need to make a space of memory where I can ensure that it will terminate
// correctly. Start by loading the relevant data from the WAD.
sprinfoLump = (char *)W_CacheLumpNumPwad(wadNum, lumpNum, PU_STATIC);
// If that didn't exist, we have nothing to do here.
if (sprinfoLump == NULL) return;
// If we're still here, then it DOES exist; figure out how long it is, and allot memory accordingly.
sprinfoLumpLength = W_LumpLengthPwad(wadNum, lumpNum);
sprinfoText = (char *)Z_Malloc((sprinfoLumpLength+1)*sizeof(char),PU_STATIC,NULL);
// Now move the contents of the lump into this new location.
memmove(sprinfoText,sprinfoLump,sprinfoLumpLength);
// Make damn well sure the last character in our new memory location is \0.
sprinfoText[sprinfoLumpLength] = '\0';
// Finally, free up the memory from the first data load, because we really
// don't need it.
Z_Free(sprinfoLump);
sprinfoToken = M_GetToken(sprinfoText);
while (sprinfoToken != NULL)
{
if (!stricmp(sprinfoToken, "SPRITE"))
R_ParseSpriteInfo(false);
else if (!stricmp(sprinfoToken, "SPRITE2"))
R_ParseSpriteInfo(true);
else
I_Error("Error parsing SPRTINFO lump: Unknown keyword \"%s\"", sprinfoToken);
Z_Free(sprinfoToken);
sprinfoToken = M_GetToken(NULL);
}
Z_Free((void *)sprinfoText);
}
//
// R_LoadSpriteInfoLumps
//
// Load and read every SPRTINFO lump from the specified file.
//
void R_LoadSpriteInfoLumps(UINT16 wadnum, UINT16 numlumps)
{
lumpinfo_t *lumpinfo = wadfiles[wadnum]->lumpinfo;
UINT16 i;
char *name;
for (i = 0; i < numlumps; i++, lumpinfo++)
{
name = lumpinfo->name;
// Load SPRTINFO and SPR_ lumps as SpriteInfo
if (!memcmp(name, "SPRTINFO", 8) || !memcmp(name, "SPR_", 4))
R_ParseSPRTINFOLump(wadnum, i);
}
}