SRB2/src/p_slopes.c

899 lines
25 KiB
C

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 2004 by Stephen McGranahan
// Copyright (C) 2015-2021 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file p_slopes.c
/// \brief ZDoom + Eternity Engine Slopes, ported and enhanced by Kalaron
#include "doomdef.h"
#include "r_defs.h"
#include "r_state.h"
#include "m_bbox.h"
#include "z_zone.h"
#include "p_local.h"
#include "p_spec.h"
#include "p_slopes.h"
#include "p_setup.h"
#include "r_main.h"
#include "p_maputl.h"
#include "w_wad.h"
pslope_t *slopelist = NULL;
UINT16 slopecount = 0;
// Calculate line normal
void P_CalculateSlopeNormal(pslope_t *slope) {
slope->normal.z = FINECOSINE(slope->zangle>>ANGLETOFINESHIFT);
slope->normal.x = FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.x);
slope->normal.y = FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.y);
}
/// Setup slope via 3 vertexes.
static void ReconfigureViaVertexes (pslope_t *slope, const vector3_t v1, const vector3_t v2, const vector3_t v3)
{
vector3_t vec1, vec2;
// Set origin.
FV3_Copy(&slope->o, &v1);
// Get slope's normal.
FV3_SubEx(&v2, &v1, &vec1);
FV3_SubEx(&v3, &v1, &vec2);
// Set some defaults for a non-sloped "slope"
if (vec1.z == 0 && vec2.z == 0)
{
slope->zangle = slope->xydirection = 0;
slope->zdelta = slope->d.x = slope->d.y = 0;
slope->normal.x = slope->normal.y = 0;
slope->normal.z = FRACUNIT;
}
else
{
/// \note Using fixed point for vectorial products easily leads to overflows so we work around by downscaling them.
fixed_t m = max(
max(max(abs(vec1.x), abs(vec1.y)), abs(vec1.z)),
max(max(abs(vec2.x), abs(vec2.y)), abs(vec2.z))
) >> 5; // shifting right by 5 is good enough.
FV3_Cross(
FV3_Divide(&vec1, m),
FV3_Divide(&vec2, m),
&slope->normal
);
// NOTE: FV3_Magnitude() doesn't work properly in some cases, and chaining FixedHypot() seems to give worse results.
m = R_PointToDist2(0, 0, R_PointToDist2(0, 0, slope->normal.x, slope->normal.y), slope->normal.z);
// Invert normal if it's facing down.
if (slope->normal.z < 0)
m = -m;
FV3_Divide(&slope->normal, m);
// Get direction vector
m = FixedHypot(slope->normal.x, slope->normal.y);
slope->d.x = -FixedDiv(slope->normal.x, m);
slope->d.y = -FixedDiv(slope->normal.y, m);
// Z delta
slope->zdelta = FixedDiv(m, slope->normal.z);
// Get angles
slope->xydirection = R_PointToAngle2(0, 0, slope->d.x, slope->d.y)+ANGLE_180;
slope->zangle = InvAngle(R_PointToAngle2(0, 0, FRACUNIT, slope->zdelta));
}
}
/// Recalculate dynamic slopes.
void T_DynamicSlopeLine (dynplanethink_t* th)
{
pslope_t* slope = th->slope;
line_t* srcline = th->sourceline;
fixed_t zdelta;
switch(th->type) {
case DP_FRONTFLOOR:
zdelta = srcline->backsector->floorheight - srcline->frontsector->floorheight;
slope->o.z = srcline->frontsector->floorheight;
break;
case DP_FRONTCEIL:
zdelta = srcline->backsector->ceilingheight - srcline->frontsector->ceilingheight;
slope->o.z = srcline->frontsector->ceilingheight;
break;
case DP_BACKFLOOR:
zdelta = srcline->frontsector->floorheight - srcline->backsector->floorheight;
slope->o.z = srcline->backsector->floorheight;
break;
case DP_BACKCEIL:
zdelta = srcline->frontsector->ceilingheight - srcline->backsector->ceilingheight;
slope->o.z = srcline->backsector->ceilingheight;
break;
default:
return;
}
if (slope->zdelta != FixedDiv(zdelta, th->extent)) {
slope->zdelta = FixedDiv(zdelta, th->extent);
slope->zangle = R_PointToAngle2(0, 0, th->extent, -zdelta);
P_CalculateSlopeNormal(slope);
}
}
/// Mapthing-defined
void T_DynamicSlopeVert (dynplanethink_t* th)
{
pslope_t* slope = th->slope;
size_t i;
INT32 l;
for (i = 0; i < 3; i++) {
l = Tag_FindLineSpecial(799, th->tags[i]);
if (l != -1) {
th->vex[i].z = lines[l].frontsector->floorheight;
}
else
th->vex[i].z = 0;
}
ReconfigureViaVertexes(slope, th->vex[0], th->vex[1], th->vex[2]);
}
static inline void P_AddDynSlopeThinker (pslope_t* slope, dynplanetype_t type, line_t* sourceline, fixed_t extent, const INT16 tags[3], const vector3_t vx[3])
{
dynplanethink_t* th = Z_Calloc(sizeof (*th), PU_LEVSPEC, NULL);
switch (type)
{
case DP_VERTEX:
th->thinker.function.acp1 = (actionf_p1)T_DynamicSlopeVert;
memcpy(th->tags, tags, sizeof(th->tags));
memcpy(th->vex, vx, sizeof(th->vex));
break;
default:
th->thinker.function.acp1 = (actionf_p1)T_DynamicSlopeLine;
th->sourceline = sourceline;
th->extent = extent;
}
th->slope = slope;
th->type = type;
P_AddThinker(THINK_DYNSLOPE, &th->thinker);
}
/// Create a new slope and add it to the slope list.
static inline pslope_t* Slope_Add (const UINT8 flags)
{
pslope_t *ret = Z_Calloc(sizeof(pslope_t), PU_LEVEL, NULL);
ret->flags = flags;
ret->next = slopelist;
slopelist = ret;
slopecount++;
ret->id = slopecount;
return ret;
}
/// Alocates and fill the contents of a slope structure.
static pslope_t *MakeViaVectors(const vector3_t *o, const vector2_t *d,
const fixed_t zdelta, UINT8 flags)
{
pslope_t *ret = Slope_Add(flags);
FV3_Copy(&ret->o, o);
FV2_Copy(&ret->d, d);
ret->zdelta = zdelta;
ret->flags = flags;
return ret;
}
/// Get furthest perpendicular distance from all vertexes in a sector for a given line.
static fixed_t GetExtent(sector_t *sector, line_t *line)
{
// ZDoom code reference: v3float_t = vertex_t
fixed_t fardist = -FRACUNIT;
size_t i;
// Find furthest vertex from the reference line. It, along with the two ends
// of the line, will define the plane.
for(i = 0; i < sector->linecount; i++)
{
line_t *li = sector->lines[i];
vertex_t tempv;
fixed_t dist;
// Don't compare to the slope line.
if(li == line)
continue;
P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv);
dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y);
if(dist > fardist)
fardist = dist;
// Okay, maybe do it for v2 as well?
P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv);
dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y);
if(dist > fardist)
fardist = dist;
}
return fardist;
}
/// Creates one or more slopes based on the given line type and front/back sectors.
static void line_SpawnViaLine(const int linenum, const boolean spawnthinker)
{
// With dynamic slopes, it's fine to just leave this function as normal,
// because checking to see if a slope had changed will waste more memory than
// if the slope was just updated when called
line_t *line = lines + linenum;
pslope_t *fslope = NULL, *cslope = NULL;
vector3_t origin, point;
vector2_t direction;
fixed_t nx, ny, dz, extent;
boolean frontfloor = line->args[0] == TMS_FRONT;
boolean backfloor = line->args[0] == TMS_BACK;
boolean frontceil = line->args[1] == TMS_FRONT;
boolean backceil = line->args[1] == TMS_BACK;
UINT8 flags = 0; // Slope flags
if (line->args[2] & TMSL_NOPHYSICS)
flags |= SL_NOPHYSICS;
if (line->args[2] & TMSL_DYNAMIC)
flags |= SL_DYNAMIC;
if(!frontfloor && !backfloor && !frontceil && !backceil)
{
CONS_Printf("line_SpawnViaLine: Slope special with nothing to do.\n");
return;
}
if(!line->frontsector || !line->backsector)
{
CONS_Debug(DBG_SETUP, "line_SpawnViaLine: Slope special used on a line without two sides. (line number %i)\n", linenum);
return;
}
{
fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy);
nx = FixedDiv(line->dy, len);
ny = -FixedDiv(line->dx, len);
}
// Set origin to line's center.
origin.x = line->v1->x + (line->v2->x - line->v1->x)/2;
origin.y = line->v1->y + (line->v2->y - line->v1->y)/2;
// For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map!
if(frontfloor || frontceil)
{
line->frontsector->hasslope = true; // Tell the software renderer that we're sloped
origin.z = line->backsector->floorheight;
direction.x = nx;
direction.y = ny;
extent = GetExtent(line->frontsector, line);
if(extent < 0)
{
CONS_Printf("line_SpawnViaLine failed to get frontsector extent on line number %i\n", linenum);
return;
}
// reposition the origin according to the extent
point.x = origin.x + FixedMul(direction.x, extent);
point.y = origin.y + FixedMul(direction.y, extent);
direction.x = -direction.x;
direction.y = -direction.y;
// TODO: We take origin and point 's xy values and translate them to the center of an FOF!
if(frontfloor)
{
point.z = line->frontsector->floorheight; // Startz
dz = FixedDiv(origin.z - point.z, extent); // Destinationz
// In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef
fslope = line->frontsector->f_slope =
MakeViaVectors(&point, &direction, dz, flags);
// Now remember that f_slope IS a vector
// fslope->o = origin 3D point 1 of the vector
// fslope->d = destination 3D point 2 of the vector
// fslope->normal is a 3D line perpendicular to the 3D vector
fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(fslope);
if (spawnthinker && (flags & SL_DYNAMIC))
P_AddDynSlopeThinker(fslope, DP_FRONTFLOOR, line, extent, NULL, NULL);
}
if(frontceil)
{
origin.z = line->backsector->ceilingheight;
point.z = line->frontsector->ceilingheight;
dz = FixedDiv(origin.z - point.z, extent);
cslope = line->frontsector->c_slope =
MakeViaVectors(&point, &direction, dz, flags);
cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(cslope);
if (spawnthinker && (flags & SL_DYNAMIC))
P_AddDynSlopeThinker(cslope, DP_FRONTCEIL, line, extent, NULL, NULL);
}
}
if(backfloor || backceil)
{
line->backsector->hasslope = true; // Tell the software renderer that we're sloped
origin.z = line->frontsector->floorheight;
// Backsector
direction.x = -nx;
direction.y = -ny;
extent = GetExtent(line->backsector, line);
if(extent < 0)
{
CONS_Printf("line_SpawnViaLine failed to get backsector extent on line number %i\n", linenum);
return;
}
// reposition the origin according to the extent
point.x = origin.x + FixedMul(direction.x, extent);
point.y = origin.y + FixedMul(direction.y, extent);
direction.x = -direction.x;
direction.y = -direction.y;
if(backfloor)
{
point.z = line->backsector->floorheight;
dz = FixedDiv(origin.z - point.z, extent);
fslope = line->backsector->f_slope =
MakeViaVectors(&point, &direction, dz, flags);
fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(fslope);
if (spawnthinker && (flags & SL_DYNAMIC))
P_AddDynSlopeThinker(fslope, DP_BACKFLOOR, line, extent, NULL, NULL);
}
if(backceil)
{
origin.z = line->frontsector->ceilingheight;
point.z = line->backsector->ceilingheight;
dz = FixedDiv(origin.z - point.z, extent);
cslope = line->backsector->c_slope =
MakeViaVectors(&point, &direction, dz, flags);
cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(cslope);
if (spawnthinker && (flags & SL_DYNAMIC))
P_AddDynSlopeThinker(cslope, DP_BACKCEIL, line, extent, NULL, NULL);
}
}
}
/// Creates a new slope from three mapthings with the specified IDs
static pslope_t *MakeViaMapthings(INT16 tag1, INT16 tag2, INT16 tag3, UINT8 flags, const boolean spawnthinker)
{
size_t i;
mapthing_t* mt = mapthings;
mapthing_t* vertices[3] = {0};
INT16 tags[3] = {tag1, tag2, tag3};
vector3_t vx[3];
pslope_t* ret = Slope_Add(flags);
// And... look for the vertices in question.
for (i = 0; i < nummapthings; i++, mt++) {
if (mt->type != 750) // Haha, I'm hijacking the old Chaos Spawn thingtype for something!
continue;
if (!vertices[0] && Tag_Find(&mt->tags, tag1))
vertices[0] = mt;
else if (!vertices[1] && Tag_Find(&mt->tags, tag2))
vertices[1] = mt;
else if (!vertices[2] && Tag_Find(&mt->tags, tag3))
vertices[2] = mt;
}
// Now set heights for each vertex, because they haven't been set yet
for (i = 0; i < 3; i++) {
mt = vertices[i];
if (!mt) // If a vertex wasn't found, it's game over. There's nothing you can do to recover (except maybe try and kill the slope instead - TODO?)
I_Error("MakeViaMapthings: Slope vertex %s (for linedef tag %d) not found!", sizeu1(i), tag1);
vx[i].x = mt->x << FRACBITS;
vx[i].y = mt->y << FRACBITS;
vx[i].z = mt->z << FRACBITS;
if (!mt->extrainfo)
vx[i].z += R_PointInSubsector(vx[i].x, vx[i].y)->sector->floorheight;
}
ReconfigureViaVertexes(ret, vx[0], vx[1], vx[2]);
if (spawnthinker && (flags & SL_DYNAMIC))
P_AddDynSlopeThinker(ret, DP_VERTEX, NULL, 0, tags, vx);
return ret;
}
/// Create vertex based slopes using tagged mapthings.
static void line_SpawnViaMapthingVertexes(const int linenum, const boolean spawnthinker)
{
line_t *line = lines + linenum;
side_t *side;
pslope_t **slopetoset;
UINT16 tag1 = line->args[1];
UINT16 tag2 = line->args[2];
UINT16 tag3 = line->args[3];
UINT8 flags = 0; // Slope flags
if (line->args[4] & TMSL_NOPHYSICS)
flags |= SL_NOPHYSICS;
if (line->args[4] & TMSL_DYNAMIC)
flags |= SL_DYNAMIC;
switch(line->args[0])
{
case TMSP_FRONTFLOOR:
slopetoset = &line->frontsector->f_slope;
side = &sides[line->sidenum[0]];
break;
case TMSP_FRONTCEILING:
slopetoset = &line->frontsector->c_slope;
side = &sides[line->sidenum[0]];
break;
case TMSP_BACKFLOOR:
slopetoset = &line->backsector->f_slope;
side = &sides[line->sidenum[1]];
break;
case TMSP_BACKCEILING:
slopetoset = &line->backsector->c_slope;
side = &sides[line->sidenum[1]];
default:
return;
}
*slopetoset = MakeViaMapthings(tag1, tag2, tag3, flags, spawnthinker);
side->sector->hasslope = true;
}
/// Spawn textmap vertex slopes.
static void SpawnVertexSlopes(void)
{
line_t *l1, *l2;
sector_t* sc;
vertex_t *v1, *v2, *v3;
size_t i;
for (i = 0, sc = sectors; i < numsectors; i++, sc++)
{
// The vertex slopes only work for 3-vertex sectors (and thus 3-sided sectors).
if (sc->linecount != 3)
continue;
l1 = sc->lines[0];
l2 = sc->lines[1];
// Determine the vertexes.
v1 = l1->v1;
v2 = l1->v2;
if ((l2->v1 != v1) && (l2->v1 != v2))
v3 = l2->v1;
else
v3 = l2->v2;
if (v1->floorzset || v2->floorzset || v3->floorzset)
{
vector3_t vtx[3] = {
{v1->x, v1->y, v1->floorzset ? v1->floorz : sc->floorheight},
{v2->x, v2->y, v2->floorzset ? v2->floorz : sc->floorheight},
{v3->x, v3->y, v3->floorzset ? v3->floorz : sc->floorheight}};
pslope_t *slop = Slope_Add(0);
sc->f_slope = slop;
sc->hasslope = true;
ReconfigureViaVertexes(slop, vtx[0], vtx[1], vtx[2]);
}
if (v1->ceilingzset || v2->ceilingzset || v3->ceilingzset)
{
vector3_t vtx[3] = {
{v1->x, v1->y, v1->ceilingzset ? v1->ceilingz : sc->ceilingheight},
{v2->x, v2->y, v2->ceilingzset ? v2->ceilingz : sc->ceilingheight},
{v3->x, v3->y, v3->ceilingzset ? v3->ceilingz : sc->ceilingheight}};
pslope_t *slop = Slope_Add(0);
sc->c_slope = slop;
sc->hasslope = true;
ReconfigureViaVertexes(slop, vtx[0], vtx[1], vtx[2]);
}
}
}
static boolean P_SetSlopeFromTag(sector_t *sec, INT32 tag, boolean ceiling)
{
INT32 i;
pslope_t **secslope = ceiling ? &sec->c_slope : &sec->f_slope;
TAG_ITER_DECLARECOUNTER(0);
if (!tag || *secslope)
return false;
TAG_ITER_SECTORS(0, tag, i)
{
pslope_t *srcslope = ceiling ? sectors[i].c_slope : sectors[i].f_slope;
if (srcslope)
{
*secslope = srcslope;
return true;
}
}
return false;
}
static boolean P_CopySlope(pslope_t **toslope, pslope_t *fromslope)
{
if (*toslope || !fromslope)
return true;
*toslope = fromslope;
return true;
}
static void P_UpdateHasSlope(sector_t *sec)
{
size_t i;
sec->hasslope = true;
// if this is an FOF control sector, make sure any target sectors also are marked as having slopes
if (sec->numattached)
for (i = 0; i < sec->numattached; i++)
sectors[sec->attached[i]].hasslope = true;
}
//
// P_CopySectorSlope
//
// Searches through tagged sectors and copies
//
void P_CopySectorSlope(line_t *line)
{
sector_t *fsec = line->frontsector;
sector_t *bsec = line->backsector;
boolean setfront = false;
boolean setback = false;
setfront |= P_SetSlopeFromTag(fsec, line->args[0], false);
setfront |= P_SetSlopeFromTag(fsec, line->args[1], true);
if (bsec)
{
setback |= P_SetSlopeFromTag(bsec, line->args[2], false);
setback |= P_SetSlopeFromTag(bsec, line->args[3], true);
if (line->args[4] & TMSC_FRONTTOBACKFLOOR)
setback |= P_CopySlope(&bsec->f_slope, fsec->f_slope);
if (line->args[4] & TMSC_BACKTOFRONTFLOOR)
setfront |= P_CopySlope(&fsec->f_slope, bsec->f_slope);
if (line->args[4] & TMSC_FRONTTOBACKCEILING)
setback |= P_CopySlope(&bsec->c_slope, fsec->c_slope);
if (line->args[4] & TMSC_BACKTOFRONTCEILING)
setfront |= P_CopySlope(&fsec->c_slope, bsec->c_slope);
}
if (setfront)
P_UpdateHasSlope(fsec);
if (setback)
P_UpdateHasSlope(bsec);
line->special = 0; // Linedef was use to set slopes, it finished its job, so now make it a normal linedef
}
//
// P_SlopeById
//
// Looks in the slope list for a slope with a specified ID. Mostly useful for netgame sync
//
pslope_t *P_SlopeById(UINT16 id)
{
pslope_t *ret;
for (ret = slopelist; ret && ret->id != id; ret = ret->next);
return ret;
}
/// Initializes and reads the slopes from the map data.
void P_SpawnSlopes(const boolean fromsave) {
size_t i;
slopelist = NULL;
slopecount = 0;
/// Generates vertex slopes.
SpawnVertexSlopes();
/// Generates line special-defined slopes.
for (i = 0; i < numlines; i++)
{
switch (lines[i].special)
{
case 700:
line_SpawnViaLine(i, !fromsave);
break;
case 704:
line_SpawnViaMapthingVertexes(i, !fromsave);
break;
default:
break;
}
}
/// Copies slopes from tagged sectors via line specials.
/// \note Doesn't actually copy, but instead they share the same pointers.
for (i = 0; i < numlines; i++)
switch (lines[i].special)
{
case 720:
P_CopySectorSlope(&lines[i]);
default:
break;
}
}
// ============================================================================
//
// Various utilities related to slopes
//
// Returns the height of the sloped plane at (x, y) as a fixed_t
fixed_t P_GetSlopeZAt(const pslope_t *slope, fixed_t x, fixed_t y)
{
fixed_t dist = FixedMul(x - slope->o.x, slope->d.x) +
FixedMul(y - slope->o.y, slope->d.y);
return slope->o.z + FixedMul(dist, slope->zdelta);
}
// Like P_GetSlopeZAt but falls back to z if slope is NULL
fixed_t P_GetZAt(const pslope_t *slope, fixed_t x, fixed_t y, fixed_t z)
{
return slope ? P_GetSlopeZAt(slope, x, y) : z;
}
// Returns the height of the sector floor at (x, y)
fixed_t P_GetSectorFloorZAt(const sector_t *sector, fixed_t x, fixed_t y)
{
return sector->f_slope ? P_GetSlopeZAt(sector->f_slope, x, y) : sector->floorheight;
}
// Returns the height of the sector ceiling at (x, y)
fixed_t P_GetSectorCeilingZAt(const sector_t *sector, fixed_t x, fixed_t y)
{
return sector->c_slope ? P_GetSlopeZAt(sector->c_slope, x, y) : sector->ceilingheight;
}
// Returns the height of the FOF top at (x, y)
fixed_t P_GetFFloorTopZAt(const ffloor_t *ffloor, fixed_t x, fixed_t y)
{
return *ffloor->t_slope ? P_GetSlopeZAt(*ffloor->t_slope, x, y) : *ffloor->topheight;
}
// Returns the height of the FOF bottom at (x, y)
fixed_t P_GetFFloorBottomZAt(const ffloor_t *ffloor, fixed_t x, fixed_t y)
{
return *ffloor->b_slope ? P_GetSlopeZAt(*ffloor->b_slope, x, y) : *ffloor->bottomheight;
}
// Returns the height of the light list at (x, y)
fixed_t P_GetLightZAt(const lightlist_t *light, fixed_t x, fixed_t y)
{
return light->slope ? P_GetSlopeZAt(light->slope, x, y) : light->height;
}
//
// P_QuantizeMomentumToSlope
//
// When given a vector, rotates it and aligns it to a slope
void P_QuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope)
{
vector3_t axis; // Fuck you, C90.
if (slope->flags & SL_NOPHYSICS)
return; // No physics, no quantizing.
axis.x = -slope->d.y;
axis.y = slope->d.x;
axis.z = 0;
FV3_Rotate(momentum, &axis, slope->zangle >> ANGLETOFINESHIFT);
}
//
// P_ReverseQuantizeMomentumToSlope
//
// When given a vector, rotates and aligns it to a flat surface (from being relative to a given slope)
void P_ReverseQuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope)
{
slope->zangle = InvAngle(slope->zangle);
P_QuantizeMomentumToSlope(momentum, slope);
slope->zangle = InvAngle(slope->zangle);
}
//
// P_SlopeLaunch
//
// Handles slope ejection for objects
void P_SlopeLaunch(mobj_t *mo)
{
if (!(mo->standingslope->flags & SL_NOPHYSICS) // If there's physics, time for launching.
&& (mo->standingslope->normal.x != 0
|| mo->standingslope->normal.y != 0))
{
// Double the pre-rotation Z, then halve the post-rotation Z. This reduces the
// vertical launch given from slopes while increasing the horizontal launch
// given. Good for SRB2's gravity and horizontal speeds.
vector3_t slopemom;
slopemom.x = mo->momx;
slopemom.y = mo->momy;
slopemom.z = mo->momz*2;
P_QuantizeMomentumToSlope(&slopemom, mo->standingslope);
mo->momx = slopemom.x;
mo->momy = slopemom.y;
mo->momz = slopemom.z/2;
}
//CONS_Printf("Launched off of slope.\n");
mo->standingslope = NULL;
if (mo->player)
mo->player->powers[pw_justlaunched] = 1;
}
//
// P_GetWallTransferMomZ
//
// It would be nice to have a single function that does everything necessary for slope-to-wall transfer.
// However, it needs to be seperated out in P_XYMovement to take into account momentum before and after hitting the wall.
// This just performs the necessary calculations for getting the base vertical momentum; the horizontal is already reasonably calculated by P_SlideMove.
fixed_t P_GetWallTransferMomZ(mobj_t *mo, pslope_t *slope)
{
vector3_t slopemom, axis;
angle_t ang;
if (mo->standingslope->flags & SL_NOPHYSICS)
return 0;
// If there's physics, time for launching.
// Doesn't kill the vertical momentum as much as P_SlopeLaunch does.
ang = slope->zangle + ANG15*((slope->zangle > 0) ? 1 : -1);
if (ang > ANGLE_90 && ang < ANGLE_180)
ang = ((slope->zangle > 0) ? ANGLE_90 : InvAngle(ANGLE_90)); // hard cap of directly upwards
slopemom.x = mo->momx;
slopemom.y = mo->momy;
slopemom.z = 3*(mo->momz/2);
axis.x = -slope->d.y;
axis.y = slope->d.x;
axis.z = 0;
FV3_Rotate(&slopemom, &axis, ang >> ANGLETOFINESHIFT);
return 2*(slopemom.z/3);
}
// Function to help handle landing on slopes
void P_HandleSlopeLanding(mobj_t *thing, pslope_t *slope)
{
vector3_t mom; // Ditto.
if (slope->flags & SL_NOPHYSICS || (slope->normal.x == 0 && slope->normal.y == 0)) { // No physics, no need to make anything complicated.
if (P_MobjFlip(thing)*(thing->momz) < 0) // falling, land on slope
{
thing->standingslope = slope;
if (!thing->player || !(thing->player->pflags & PF_BOUNCING))
thing->momz = -P_MobjFlip(thing);
}
return;
}
mom.x = thing->momx;
mom.y = thing->momy;
mom.z = thing->momz*2;
P_ReverseQuantizeMomentumToSlope(&mom, slope);
if (P_MobjFlip(thing)*mom.z < 0) { // falling, land on slope
thing->momx = mom.x;
thing->momy = mom.y;
thing->standingslope = slope;
if (!thing->player || !(thing->player->pflags & PF_BOUNCING))
thing->momz = -P_MobjFlip(thing);
}
}
// https://yourlogicalfallacyis.com/slippery-slope
// Handles sliding down slopes, like if they were made of butter :)
void P_ButteredSlope(mobj_t *mo)
{
fixed_t thrust;
if (!mo->standingslope)
return;
if (mo->standingslope->flags & SL_NOPHYSICS)
return; // No physics, no butter.
if (mo->flags & (MF_NOCLIPHEIGHT|MF_NOGRAVITY))
return; // don't slide down slopes if you can't touch them or you're not affected by gravity
if (mo->player) {
if (abs(mo->standingslope->zdelta) < FRACUNIT/4 && !(mo->player->pflags & PF_SPINNING))
return; // Don't slide on non-steep slopes unless spinning
if (abs(mo->standingslope->zdelta) < FRACUNIT/2 && !(mo->player->rmomx || mo->player->rmomy))
return; // Allow the player to stand still on slopes below a certain steepness
}
thrust = FINESINE(mo->standingslope->zangle>>ANGLETOFINESHIFT) * 3 / 2 * (mo->eflags & MFE_VERTICALFLIP ? 1 : -1);
if (mo->player && (mo->player->pflags & PF_SPINNING)) {
fixed_t mult = 0;
if (mo->momx || mo->momy) {
angle_t angle = R_PointToAngle2(0, 0, mo->momx, mo->momy) - mo->standingslope->xydirection;
if (P_MobjFlip(mo) * mo->standingslope->zdelta < 0)
angle ^= ANGLE_180;
mult = FINECOSINE(angle >> ANGLETOFINESHIFT);
}
thrust = FixedMul(thrust, FRACUNIT*2/3 + mult/8);
}
if (mo->momx || mo->momy) // Slightly increase thrust based on the object's speed
thrust = FixedMul(thrust, FRACUNIT+P_AproxDistance(mo->momx, mo->momy)/16);
// This makes it harder to zigzag up steep slopes, as well as allows greater top speed when rolling down
// Let's get the gravity strength for the object...
thrust = FixedMul(thrust, abs(P_GetMobjGravity(mo)));
// ... and its friction against the ground for good measure (divided by original friction to keep behaviour for normal slopes the same).
thrust = FixedMul(thrust, FixedDiv(mo->friction, ORIG_FRICTION));
P_Thrust(mo, mo->standingslope->xydirection, thrust);
}