Separate non-powers-of-two draw routines into its own file

This commit is contained in:
Jaime Passos 2019-12-13 13:11:56 -03:00
parent fa58c1fb26
commit 6720279969
11 changed files with 1224 additions and 635 deletions

View File

@ -960,6 +960,7 @@ void R_DrawViewBorder(void)
// ==========================================================================
#include "r_draw8.c"
#include "r_draw8_npo2.c"
// ==========================================================================
// INCLUDE 16bpp DRAWING CODE HERE

View File

@ -140,6 +140,44 @@ void R_DrawViewBorder(void);
void R_DrawColumn_8(void);
void R_DrawShadeColumn_8(void);
void R_DrawTranslucentColumn_8(void);
void R_DrawTranslatedColumn_8(void);
void R_DrawTranslatedTranslucentColumn_8(void);
void R_Draw2sMultiPatchColumn_8(void);
void R_Draw2sMultiPatchTranslucentColumn_8(void);
void R_DrawFogColumn_8(void);
void R_DrawColumnShadowed_8(void);
void R_DrawSpan_8(void);
void R_DrawSplat_8(void);
void R_DrawTranslucentSpan_8(void);
void R_DrawTranslucentSplat_8(void);
#ifdef ESLOPE
void R_DrawTiltedSpan_8(void);
void R_DrawTiltedTranslucentSpan_8(void);
void R_DrawTiltedSplat_8(void);
void R_CalcTiltedLighting(fixed_t start, fixed_t end);
extern INT32 tiltlighting[MAXVIDWIDTH];
#endif
#ifndef NOWATER
void R_DrawTranslucentWaterSpan_8(void);
extern INT32 ds_bgofs;
extern INT32 ds_waterofs;
#endif
void R_DrawFogSpan_8(void);
// Lactozilla: Non-powers-of-two
void R_DrawSpan_NPO2_8(void);
void R_DrawTranslucentSpan_NPO2_8(void);
void R_DrawSplat_NPO2_8(void);
void R_DrawTranslucentSplat_NPO2_8(void);
#ifdef ESLOPE
void R_DrawTiltedSpan_NPO2_8(void);
void R_DrawTiltedTranslucentSpan_NPO2_8(void);
void R_DrawTiltedSplat_NPO2_8(void);
#endif
#ifndef NOWATER
void R_DrawTranslucentWaterSpan_NPO2_8(void);
#endif
#ifdef USEASM
void ASMCALL R_DrawColumn_8_ASM(void);
@ -153,31 +191,6 @@ void ASMCALL R_Draw2sMultiPatchColumn_8_MMX(void);
void ASMCALL R_DrawSpan_8_MMX(void);
#endif
void R_DrawTranslatedColumn_8(void);
void R_DrawTranslatedTranslucentColumn_8(void);
void R_DrawSpan_8(void);
#ifdef ESLOPE
void R_CalcTiltedLighting(fixed_t start, fixed_t end);
void R_DrawTiltedSpan_8(void);
void R_DrawTiltedTranslucentSpan_8(void);
void R_DrawTiltedSplat_8(void);
#endif
void R_DrawSplat_8(void);
void R_DrawTranslucentSplat_8(void);
void R_DrawTranslucentSpan_8(void);
void R_Draw2sMultiPatchColumn_8(void);
void R_Draw2sMultiPatchTranslucentColumn_8(void);
void R_DrawFogSpan_8(void);
void R_DrawFogColumn_8(void);
void R_DrawColumnShadowed_8(void);
#ifndef NOWATER
void R_DrawTranslucentWaterSpan_8(void);
extern INT32 ds_bgofs;
extern INT32 ds_waterofs;
#endif
// ------------------
// 16bpp DRAWING CODE
// ------------------

File diff suppressed because it is too large Load Diff

845
src/r_draw8_npo2.c Normal file
View File

@ -0,0 +1,845 @@
// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2019 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file r_draw8_npo2.c
/// \brief 8bpp span drawer functions (for non-powers-of-two flat dimensions)
/// \note no includes because this is included as part of r_draw.c
// ==========================================================================
// SPANS
// ==========================================================================
/** \brief The R_DrawSpan_NPO2_8 function
Draws the actual span.
*/
void R_DrawSpan_NPO2_8 (void)
{
fixed_t xposition;
fixed_t yposition;
fixed_t xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
size_t count = (ds_x2 - ds_x1 + 1);
xposition = ds_xfrac; yposition = ds_yfrac;
xstep = ds_xstep; ystep = ds_ystep;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
if (dest+8 > deststop)
return;
while (count-- && dest <= deststop)
{
fixed_t x = (xposition >> FRACBITS);
fixed_t y = (yposition >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest++ = colormap[source[((y * ds_flatwidth) + x)]];
xposition += xstep;
yposition += ystep;
}
}
#ifdef ESLOPE
/** \brief The R_DrawTiltedSpan_NPO2_8 function
Draw slopes! Holy sheit!
*/
void R_DrawTiltedSpan_NPO2_8(void)
{
// x1, x2 = ds_x1, ds_x2
int width = ds_x2 - ds_x1;
double iz, uz, vz;
UINT32 u, v;
int i;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
double startz, startu, startv;
double izstep, uzstep, vzstep;
double endz, endu, endv;
UINT32 stepu, stepv;
iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx);
// Lighting is simple. It's just linear interpolation from start to end
{
float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f;
float lightstart, lightend;
lightend = (iz + ds_sz.x*width) * planelightfloat;
lightstart = iz * planelightfloat;
R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend));
//CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf);
}
uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx);
vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx);
dest = ylookup[ds_y] + columnofs[ds_x1];
source = ds_source;
//colormap = ds_colormap;
#if 0 // The "perfect" reference version of this routine. Pretty slow.
// Use it only to see how things are supposed to look.
i = 0;
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = colormap[source[((y * ds_flatwidth) + x)]];
}
dest++;
iz += ds_sz.x;
uz += ds_su.x;
vz += ds_sv.x;
} while (--width >= 0);
#else
#define SPANSIZE 16
#define INVSPAN 0.0625f
startz = 1.f/iz;
startu = uz*startz;
startv = vz*startz;
izstep = ds_sz.x * SPANSIZE;
uzstep = ds_su.x * SPANSIZE;
vzstep = ds_sv.x * SPANSIZE;
//x1 = 0;
width++;
while (width >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = colormap[source[((y * ds_flatwidth) + x)]];
}
dest++;
u += stepu;
v += stepv;
}
startu = endu;
startv = endv;
width -= SPANSIZE;
}
if (width > 0)
{
if (width == 1)
{
u = (INT64)(startu);
v = (INT64)(startv);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = colormap[source[((y * ds_flatwidth) + x)]];
}
}
else
{
double left = width;
iz += ds_sz.x * left;
uz += ds_su.x * left;
vz += ds_sv.x * left;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = colormap[source[((y * ds_flatwidth) + x)]];
}
dest++;
u += stepu;
v += stepv;
}
}
}
#endif
}
/** \brief The R_DrawTiltedTranslucentSpan_NPO2_8 function
Like DrawTiltedSpan_NPO2, but translucent
*/
void R_DrawTiltedTranslucentSpan_NPO2_8(void)
{
// x1, x2 = ds_x1, ds_x2
int width = ds_x2 - ds_x1;
double iz, uz, vz;
UINT32 u, v;
int i;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
double startz, startu, startv;
double izstep, uzstep, vzstep;
double endz, endu, endv;
UINT32 stepu, stepv;
iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx);
// Lighting is simple. It's just linear interpolation from start to end
{
float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f;
float lightstart, lightend;
lightend = (iz + ds_sz.x*width) * planelightfloat;
lightstart = iz * planelightfloat;
R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend));
//CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf);
}
uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx);
vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx);
dest = ylookup[ds_y] + columnofs[ds_x1];
source = ds_source;
//colormap = ds_colormap;
#if 0 // The "perfect" reference version of this routine. Pretty slow.
// Use it only to see how things are supposed to look.
i = 0;
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = *(ds_transmap + (colormap[source[((y * ds_flatwidth) + x)]] << 8) + *dest);
}
dest++;
iz += ds_sz.x;
uz += ds_su.x;
vz += ds_sv.x;
} while (--width >= 0);
#else
#define SPANSIZE 16
#define INVSPAN 0.0625f
startz = 1.f/iz;
startu = uz*startz;
startv = vz*startz;
izstep = ds_sz.x * SPANSIZE;
uzstep = ds_su.x * SPANSIZE;
vzstep = ds_sv.x * SPANSIZE;
//x1 = 0;
width++;
while (width >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = *(ds_transmap + (colormap[source[((y * ds_flatwidth) + x)]] << 8) + *dest);
}
dest++;
u += stepu;
v += stepv;
}
startu = endu;
startv = endv;
width -= SPANSIZE;
}
if (width > 0)
{
if (width == 1)
{
u = (INT64)(startu);
v = (INT64)(startv);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = *(ds_transmap + (colormap[source[((y * ds_flatwidth) + x)]] << 8) + *dest);
}
}
else
{
double left = width;
iz += ds_sz.x * left;
uz += ds_su.x * left;
vz += ds_sv.x * left;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest = *(ds_transmap + (colormap[source[((y * ds_flatwidth) + x)]] << 8) + *dest);
}
dest++;
u += stepu;
v += stepv;
}
}
}
#endif
}
void R_DrawTiltedSplat_NPO2_8(void)
{
// x1, x2 = ds_x1, ds_x2
int width = ds_x2 - ds_x1;
double iz, uz, vz;
UINT32 u, v;
int i;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
UINT8 val;
double startz, startu, startv;
double izstep, uzstep, vzstep;
double endz, endu, endv;
UINT32 stepu, stepv;
iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx);
// Lighting is simple. It's just linear interpolation from start to end
{
float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f;
float lightstart, lightend;
lightend = (iz + ds_sz.x*width) * planelightfloat;
lightstart = iz * planelightfloat;
R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend));
//CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf);
}
uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx);
vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx);
dest = ylookup[ds_y] + columnofs[ds_x1];
source = ds_source;
//colormap = ds_colormap;
#if 0 // The "perfect" reference version of this routine. Pretty slow.
// Use it only to see how things are supposed to look.
i = 0;
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = source[((y * ds_flatwidth) + x)];
}
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest++;
iz += ds_sz.x;
uz += ds_su.x;
vz += ds_sv.x;
} while (--width >= 0);
#else
#define SPANSIZE 16
#define INVSPAN 0.0625f
startz = 1.f/iz;
startu = uz*startz;
startv = vz*startz;
izstep = ds_sz.x * SPANSIZE;
uzstep = ds_su.x * SPANSIZE;
vzstep = ds_sv.x * SPANSIZE;
//x1 = 0;
width++;
while (width >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = source[((y * ds_flatwidth) + x)];
}
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest++;
u += stepu;
v += stepv;
}
startu = endu;
startv = endv;
width -= SPANSIZE;
}
if (width > 0)
{
if (width == 1)
{
u = (INT64)(startu);
v = (INT64)(startv);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = source[((y * ds_flatwidth) + x)];
}
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
}
else
{
double left = width;
iz += ds_sz.x * left;
uz += ds_su.x * left;
vz += ds_sv.x * left;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
val = source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)];
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = source[((y * ds_flatwidth) + x)];
}
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest++;
u += stepu;
v += stepv;
}
}
}
#endif
}
#endif // ESLOPE
/** \brief The R_DrawSplat_NPO2_8 function
Just like R_DrawSpan_NPO2_8, but skips transparent pixels.
*/
void R_DrawSplat_NPO2_8 (void)
{
fixed_t xposition;
fixed_t yposition;
fixed_t xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
size_t count = (ds_x2 - ds_x1 + 1);
UINT32 val;
xposition = ds_xfrac; yposition = ds_yfrac;
xstep = ds_xstep; ystep = ds_ystep;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
while (count-- && dest <= deststop)
{
fixed_t x = (xposition >> FRACBITS);
fixed_t y = (yposition >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = source[((y * ds_flatwidth) + x)];
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest++;
xposition += xstep;
yposition += ystep;
}
}
/** \brief The R_DrawTranslucentSplat_NPO2_8 function
Just like R_DrawSplat_NPO2_8, but is translucent!
*/
void R_DrawTranslucentSplat_NPO2_8 (void)
{
fixed_t xposition;
fixed_t yposition;
fixed_t xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
size_t count = (ds_x2 - ds_x1 + 1);
UINT32 val;
xposition = ds_xfrac; yposition = ds_yfrac;
xstep = ds_xstep; ystep = ds_ystep;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
while (count-- && dest <= deststop)
{
fixed_t x = (xposition >> FRACBITS);
fixed_t y = (yposition >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = source[((y * ds_flatwidth) + x)];
if (val != TRANSPARENTPIXEL)
*dest = *(ds_transmap + (colormap[val] << 8) + *dest);
dest++;
xposition += xstep;
yposition += ystep;
}
}
/** \brief The R_DrawTranslucentSpan_NPO2_8 function
Draws the actual span with translucency.
*/
void R_DrawTranslucentSpan_NPO2_8 (void)
{
fixed_t xposition;
fixed_t yposition;
fixed_t xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
size_t count = (ds_x2 - ds_x1 + 1);
UINT32 val;
xposition = ds_xfrac; yposition = ds_yfrac;
xstep = ds_xstep; ystep = ds_ystep;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
while (count-- && dest <= deststop)
{
fixed_t x = (xposition >> FRACBITS);
fixed_t y = (yposition >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
val = ((y * ds_flatwidth) + x);
*dest = *(ds_transmap + (colormap[source[val]] << 8) + *dest);
dest++;
xposition += xstep;
yposition += ystep;
}
}
#ifndef NOWATER
void R_DrawTranslucentWaterSpan_NPO2_8(void)
{
fixed_t xposition;
fixed_t yposition;
fixed_t xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
UINT8 *dsrc;
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
size_t count = (ds_x2 - ds_x1 + 1);
xposition = ds_xfrac; yposition = (ds_yfrac + ds_waterofs);
xstep = ds_xstep; ystep = ds_ystep;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
dsrc = screens[1] + (ds_y+ds_bgofs)*vid.width + ds_x1;
while (count-- && dest <= deststop)
{
fixed_t x = (xposition >> FRACBITS);
fixed_t y = (yposition >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
x = ds_flatwidth - ((UINT32)(ds_flatwidth - x) % ds_flatwidth);
if (y < 0)
y = ds_flatheight - ((UINT32)(ds_flatheight - y) % ds_flatheight);
x %= ds_flatwidth;
y %= ds_flatheight;
*dest++ = colormap[*(ds_transmap + (source[((y * ds_flatwidth) + x)] << 8) + *dsrc++)];
xposition += xstep;
yposition += ystep;
}
}
#endif

View File

@ -841,6 +841,7 @@ void R_DrawSinglePlane(visplane_t *pl)
ffloor_t *rover;
levelflat_t *levelflat;
int type;
int spanfunctype = BASEDRAWFUNC;
if (!(pl->minx <= pl->maxx))
return;
@ -858,8 +859,9 @@ void R_DrawSinglePlane(visplane_t *pl)
spanfunc = spanfuncs[BASEDRAWFUNC];
#ifdef POLYOBJECTS_PLANES
if (pl->polyobj && pl->polyobj->translucency != 0) {
spanfunc = spanfuncs[SPANDRAWFUNC_TRANS];
if (pl->polyobj && pl->polyobj->translucency != 0)
{
spanfunctype = SPANDRAWFUNC_TRANS;
// Hacked up support for alpha value in software mode Tails 09-24-2002 (sidenote: ported to polys 10-15-2014, there was no time travel involved -Red)
if (pl->polyobj->translucency >= 10)
@ -867,10 +869,10 @@ void R_DrawSinglePlane(visplane_t *pl)
else if (pl->polyobj->translucency > 0)
ds_transmap = transtables + ((pl->polyobj->translucency-1)<<FF_TRANSSHIFT);
else // Opaque, but allow transparent flat pixels
spanfunc = spanfuncs[SPANDRAWFUNC_SPLAT];
spanfunctype = SPANDRAWFUNC_SPLAT;
#ifdef SHITPLANESPARENCY
if ((spanfunc == spanfuncs[SPANDRAWFUNC_SPLAT]) != (pl->extra_colormap && (pl->extra_colormap->fog & 4)))
if ((spanfunctype == SPANDRAWFUNC_SPLAT) != (pl->extra_colormap && (pl->extra_colormap->fog & 4)))
#else
if (!pl->extra_colormap || !(pl->extra_colormap->fog & 2))
#endif
@ -901,7 +903,7 @@ void R_DrawSinglePlane(visplane_t *pl)
if (pl->ffloor->flags & FF_TRANSLUCENT)
{
spanfunc = spanfuncs[SPANDRAWFUNC_TRANS];
spanfunctype = SPANDRAWFUNC_TRANS;
// Hacked up support for alpha value in software mode Tails 09-24-2002
if (pl->ffloor->alpha < 12)
@ -925,10 +927,10 @@ void R_DrawSinglePlane(visplane_t *pl)
else if (pl->ffloor->alpha < 243)
ds_transmap = transtables + ((tr_trans10-1)<<FF_TRANSSHIFT);
else // Opaque, but allow transparent flat pixels
spanfunc = spanfuncs[SPANDRAWFUNC_SPLAT];
spanfunctype = SPANDRAWFUNC_SPLAT;
#ifdef SHITPLANESPARENCY
if ((spanfunc == spanfuncs[SPANDRAWFUNC_SPLAT]) != (pl->extra_colormap && (pl->extra_colormap->fog & 4)))
if ((spanfunctype == SPANDRAWFUNC_SPLAT) != (pl->extra_colormap && (pl->extra_colormap->fog & 4)))
#else
if (!pl->extra_colormap || !(pl->extra_colormap->fog & 2))
#endif
@ -938,7 +940,7 @@ void R_DrawSinglePlane(visplane_t *pl)
}
else if (pl->ffloor->flags & FF_FOG)
{
spanfunc = spanfuncs[SPANDRAWFUNC_FOG];
spanfunctype = SPANDRAWFUNC_FOG;
light = (pl->lightlevel >> LIGHTSEGSHIFT);
}
else light = (pl->lightlevel >> LIGHTSEGSHIFT);
@ -953,9 +955,9 @@ void R_DrawSinglePlane(visplane_t *pl)
INT32 top, bottom;
itswater = true;
if (spanfunc == spanfuncs[SPANDRAWFUNC_TRANS])
if (spanfunctype == SPANDRAWFUNC_TRANS)
{
spanfunc = spanfuncs[SPANDRAWFUNC_WATER];
spanfunctype = SPANDRAWFUNC_WATER;
// Copy the current scene, ugh
top = pl->high-8;
@ -1032,8 +1034,8 @@ void R_DrawSinglePlane(visplane_t *pl)
if (R_CheckPowersOfTwo())
{
R_CheckFlatLength(ds_flatwidth * ds_flatheight);
if (spanfunc == spanfuncs[BASEDRAWFUNC])
spanfunc = spanfuncs[SPANDRAWFUNC_MMX];
if (spanfunctype == BASEDRAWFUNC)
spanfunctype = SPANDRAWFUNC_MMX;
}
}
@ -1187,12 +1189,12 @@ void R_DrawSinglePlane(visplane_t *pl)
}
#undef SFMULT
if (spanfunc == spanfuncs[SPANDRAWFUNC_TRANS])
spanfunc = spanfuncs[SPANDRAWFUNC_TILTEDTRANS];
else if (spanfunc == spanfuncs[SPANDRAWFUNC_SPLAT])
spanfunc = spanfuncs[SPANDRAWFUNC_TILTEDSPLAT];
if (spanfunctype == SPANDRAWFUNC_TRANS)
spanfunctype = SPANDRAWFUNC_TILTEDTRANS;
else if (spanfunctype == SPANDRAWFUNC_SPLAT)
spanfunctype = SPANDRAWFUNC_TILTEDSPLAT;
else
spanfunc = spanfuncs[SPANDRAWFUNC_TILTED];
spanfunctype = SPANDRAWFUNC_TILTED;
planezlight = scalelight[light];
} else
@ -1200,6 +1202,17 @@ void R_DrawSinglePlane(visplane_t *pl)
planezlight = zlight[light];
// Use the correct span drawer depending on the powers-of-twoness
if (!ds_powersoftwo)
{
if (spanfuncs_npo2[spanfunctype])
spanfunc = spanfuncs_npo2[spanfunctype];
else
spanfunc = spanfuncs[spanfunctype];
}
else
spanfunc = spanfuncs[spanfunctype];
// set the maximum value for unsigned
pl->top[pl->maxx+1] = 0xffff;
pl->top[pl->minx-1] = 0xffff;

View File

@ -46,6 +46,7 @@ void (*colfuncs[COLDRAWFUNC_MAX])(void);
void (*spanfunc)(void);
void (*spanfuncs[SPANDRAWFUNC_MAX])(void);
void (*spanfuncs_npo2[SPANDRAWFUNC_MAX])(void);
// ------------------
// global video state
@ -133,6 +134,21 @@ void SCR_SetMode(void)
spanfuncs[SPANDRAWFUNC_TILTEDSPLAT] = R_DrawTiltedSplat_8;
#endif
// Lactozilla: Non-powers-of-two
spanfuncs_npo2[BASEDRAWFUNC] = R_DrawSpan_NPO2_8;
spanfuncs_npo2[SPANDRAWFUNC_TRANS] = R_DrawTranslucentSpan_NPO2_8;
spanfuncs_npo2[SPANDRAWFUNC_SPLAT] = R_DrawSplat_NPO2_8;
spanfuncs_npo2[SPANDRAWFUNC_TRANSSPLAT] = R_DrawTranslucentSplat_NPO2_8;
spanfuncs_npo2[SPANDRAWFUNC_FOG] = NULL; // Not needed
spanfuncs_npo2[SPANDRAWFUNC_MMX] = NULL; // Same
#ifndef NOWATER
spanfuncs_npo2[SPANDRAWFUNC_WATER] = R_DrawTranslucentWaterSpan_NPO2_8;
#endif
#ifdef ESLOPE
spanfuncs_npo2[SPANDRAWFUNC_TILTED] = R_DrawTiltedSpan_NPO2_8;
spanfuncs_npo2[SPANDRAWFUNC_TILTEDTRANS] = R_DrawTiltedTranslucentSpan_NPO2_8;
spanfuncs_npo2[SPANDRAWFUNC_TILTEDSPLAT] = R_DrawTiltedSplat_NPO2_8;
#endif
#ifdef RUSEASM
if (R_ASM)

View File

@ -152,6 +152,7 @@ enum
extern void (*spanfunc)(void);
extern void (*spanfuncs[SPANDRAWFUNC_MAX])(void);
extern void (*spanfuncs_npo2[SPANDRAWFUNC_MAX])(void);
// -----
// CPUID

View File

@ -438,6 +438,9 @@
<ClCompile Include="..\r_draw8.c">
<ExcludedFromBuild>true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="..\r_draw8_npo2.c">
<ExcludedFromBuild>true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="..\r_main.c" />
<ClCompile Include="..\r_plane.c" />
<ClCompile Include="..\r_patch.c" />

View File

@ -837,6 +837,9 @@
<ClCompile Include="..\r_draw8.c">
<Filter>R_Rend</Filter>
</ClCompile>
<ClCompile Include="..\r_draw8_npo2.c">
<Filter>R_Rend</Filter>
</ClCompile>
<ClCompile Include="..\r_main.c">
<Filter>R_Rend</Filter>
</ClCompile>

View File

@ -295,6 +295,9 @@
<ClCompile Include="..\r_draw8.c">
<ExcludedFromBuild>true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="..\r_draw8_npo2.c">
<ExcludedFromBuild>true</ExcludedFromBuild>
</ClCompile>
<ClCompile Include="..\r_main.c" />
<ClCompile Include="..\r_plane.c" />
<ClCompile Include="..\r_patch.c" />

View File

@ -369,6 +369,9 @@
<ClCompile Include="..\r_draw16.c">
<Filter>R_Rend</Filter>
</ClCompile>
<ClCompile Include="..\r_draw8_npo2.c">
<Filter>R_Rend</Filter>
</ClCompile>
<ClCompile Include="..\r_main.c">
<Filter>R_Rend</Filter>
</ClCompile>